
化简[2(cosα)^2-1]/2tan[(π/4)-α]sin[(π/4)+α]
化简化简[2(cosα)^2-1]/2tan[(π/4)-α]sin[(π/4)+α],急用啊...
化简化简[2(cosα)^2-1]/2tan[(π/4)-α]sin[(π/4)+α],急用啊
展开
1个回答
展开全部
[2(cosα)^2-1]=cos2α
tan[(π/4)-α]=sin[(π/4)-α]/cos[(π/4)-α]
cos[(π/4)-α]=sin[(π/4)+α] sin[(π/4)-α]=cos[(π/4)+α]
所以
2tan[(π/4)-α]sin[(π/4)+α]=sin[(π/4)-α]
[2(cosα)^2-1]/2tan[(π/4)-α]sin[(π/4)+α]=cos2α/sin[(π/4)-α]
也可化简为cotα*cos[(π/4)-α]
cotα*sin[(π/4)+α]
用到的三角函数公式:
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
sin2A=2sinA·cosA
1.Cos2a=Cos^2(a)-Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
tanα=sinα/cosα
tan[(π/4)-α]=sin[(π/4)-α]/cos[(π/4)-α]
cos[(π/4)-α]=sin[(π/4)+α] sin[(π/4)-α]=cos[(π/4)+α]
所以
2tan[(π/4)-α]sin[(π/4)+α]=sin[(π/4)-α]
[2(cosα)^2-1]/2tan[(π/4)-α]sin[(π/4)+α]=cos2α/sin[(π/4)-α]
也可化简为cotα*cos[(π/4)-α]
cotα*sin[(π/4)+α]
用到的三角函数公式:
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
sin2A=2sinA·cosA
1.Cos2a=Cos^2(a)-Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
tanα=sinα/cosα
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询