按以往概率论考试结果分析,努力学习的学生90%的可能考试及格,不努力的学生由90%的可能考试不及格。试问
按以往概率论考试结果分析,努力学习的学生90%的可能考试及格,不努力的学生由90%的可能考试不及格。据调查,学生中有80%的人是努力学习的,试问:1,考试及格的学生有多大...
按以往概率论考试结果分析,努力学习的学生90%的可能考试及格,不努力的学生由90%的可能考试不及格。据调查,学生中有80%的人是努力学习的,试问:
1,考试及格的学生有多大可能是不努力学习的学生?
2,考试不及格的学生有多大可能是努力学习的学生? 展开
1,考试及格的学生有多大可能是不努力学习的学生?
2,考试不及格的学生有多大可能是努力学习的学生? 展开
6个回答
展开全部
解法如下:
设A1为努力学习的学生,A2为不努力学习的学生,B1为考试合格的学生,B2为考试不合格的学生。
由题意,P(A1)=0.8,P(A2)=0.2,P(B1/A1)=0.9,P(B2/A2)=0.9,则P(B1/A2)=0.1,由全概率公式得到考试合格的概率为P(B1)=P(B1/A1)*P(A1)+P(B1/A2)*P(A2)=0.9*0.8+0.1*0.2=0.74。
概率公式:
对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)
若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
展开全部
假设100个学生,按照你的概率论。
100X80%努力的X90%=72个及格。不及格8个
100X20%不努力X10%=2个及格。不及格18个
及格的学生中,2/(72+2)=2.7% 答案1
不及格学生中,8/(8+18)=33.3% 答案2
100X80%努力的X90%=72个及格。不及格8个
100X20%不努力X10%=2个及格。不及格18个
及格的学生中,2/(72+2)=2.7% 答案1
不及格学生中,8/(8+18)=33.3% 答案2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设努力学习为A1不努力学习为A2
考试及格为事件B
(1)p(a2|b)=p(a2b)/p(b)=0.1×0.2/(0.9×0.8+0.1×0.2)=0.027
(2)p(a1|非b)=p(a1非b)/p(非b)=0.307
考试及格为事件B
(1)p(a2|b)=p(a2b)/p(b)=0.1×0.2/(0.9×0.8+0.1×0.2)=0.027
(2)p(a1|非b)=p(a1非b)/p(非b)=0.307
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-01-04
展开全部
1.20%*10%=2%
2.80%*10%=8%
2.80%*10%=8%
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设A={被调查学生是努力学习的},则={被调查学生是不努力学习的}.由题意知P(A)=0.8,P()=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P(|)=0.9,故由贝叶斯公式知
(1)即考试及格的学生中不努力学习的学生仅占2.702%
(2) 即考试不及格的学生中努力学习的学生占30.77%
(1)即考试及格的学生中不努力学习的学生仅占2.702%
(2) 即考试不及格的学生中努力学习的学生占30.77%
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询