帮忙做一道初中数学题,重点是第三问(第三问注意是B→C→D)

如图,已知正方形ABCD的边长为4cm,动点P从点B出发,以2cm/s的速度、沿B→C→D方向,向点D运动;动点Q从点A出发,以1cm/s的速度、沿A→B方向,向点B运动... 如图,已知正方形ABCD的边长为4cm,动点P从点B出发,以2cm/s的速度、沿B→C→D方向,向点D运动;动点Q从点A出发,以1cm/s的速度、沿A→B方向,向点B运动.若P、Q两点同时出发,运动时间为t秒.
(1)连接PD、PQ、DQ,设△PQD的面积为S,试求S与t之间的函数关系式;
(2)当点P在BC上运动时,是否存在这样的t,使得△PQD是等腰三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由;
(3)以点P为圆心,作⊙P,使得⊙P与对角线BD相切.问:当点P在沿B→C→D上运动时,是否存在这样的t,使得⊙P恰好经过正方形ABCD的某一边的中点若存在,请求出符合条件的t的值;若不存在,请说明理由.
图片
展开
NEVINHX
2012-01-02 · 超过13用户采纳过TA的回答
知道答主
回答量:33
采纳率:0%
帮助的人:23.8万
展开全部

这道题并不难,前面两问我就不做了,不会的话再问我好了。

解:(3) 存在

                  ∵⊙P与BD相切  且 P的运动轨迹为BCD

              ∴ P位于B、D时⊙P不存在      P只能与正方形ABCD交于BC或CD边上

              作PH⊥BC于H  H即为切点   ∠DBP=45º(或π/4 rad)

              分类讨论:

             ⒈当P位于BC上时

                ①与BC中点相交

                   ∵BP=根号2  R

                    ∴[根号 (2)+1]R=1    R=根号(2)-1

                    t1=[2-根号2]/2

               ②与CD中点相交

                     ∵BP=根号2  R

                      ∴CP=2- 根号2  R

                         CD中点为E

                        三角形PCE是直角三角形

                       利用毕达哥拉斯定理  可得

                         R^2=(2-根号2 R)^2 + 1

                         所以R1=根号3 +  2根号2(舍去)

                                R2=-根号3+  2根号2

                           t2=(4-根号6)/2

                     ⒉当P位于CD上时

                        ∵正方形ABCD

                        ∴与E相交时R=根号(2)-1

                            t3=4-[2-根号2]/2=[6+根号2]/2

                       与BC中点F相交时  R=-根号3+  2根号2

                         t4=4-(4-根号6)/2=(4+根号6)/2

             综上所述   t 存在

                   t1=[2-根号2]/2

                   t2=(4-根号6)/2

                   t3=[6+根号2]/2

                      t4=(4+根号6)/2

真诚几梦
2012-01-02
知道答主
回答量:17
采纳率:0%
帮助的人:16.4万
展开全部
可根据三角形PQD的面积=梯形ABPD的面积-三角形AQD的面积-三角形BPQ的面积来求解,根据P,Q的速度,可以表示出AQ、BQ、BP,那么就能表示出两直角三角形的直角边以及梯形的两底和高,可根据各自的面积计算公式得出S、t之间的函数关系式.
(2)要分三种情况进行讨论:
当PD=QD时,根据斜边直角边定理,我们可得出三角形AQD和CPD全等,那么可得出CP=AQ,可用时间t分别表示出AQ、CP的长,然后可根据两者的等量关系求出t的值.
当PD=PQ时,可在直角三角形BPQ和PDC中,根据勾股定理,用BQ、BP表示出PQ,用CP、CD表示出PD;BQ、BP、PC都可以用t来表示,由此可得出关于t的方程,解方程即可得出t的值.
当QD=PQ时,方法同上.
(3)应当考虑两种情况:
①圆心P经过BC的中点,如果设圆与BD相切于M,BC的中点是E,那么PM=PE,可用时间t表示出CP的长,也就能表示出DP的长,那么可以根据勾股定理在直角三角形CEP中表示出PE2的长,也就表示出了PM2的长,然后根据∠MDP的正弦值表示出DP,PM的关系,由此可得出关于t的方程,进而求出t的值.
②圆心P经过CD的中点,如过CD的中点是E,那么PM=PE,在直角三角形DMP中,DP=2-半径的长,PM=半径的长,因此可根据∠MDP的正弦函数求出半径的长,然后用t表示出CP,即可求出t的值.

(1)当0≤t≤2时,即点P在BC上时,
S=S正方形ABCD-S△ADP-S△BPQ-S△PCD=16- •4•t- •2t•(4-t)- •(4-2t)•4=t2-2t+8,
当2<t≤4时,即点P在CD上时,DP=8-2t,
S= •(8-2t)•4=16-4t.
(2)①若PD=QD,则Rt△DCP≌Rt△DAQ(HL).
∴CP=AQ.即t=4-2t,解得t= .
②若PD=PQ,则PD2=PQ2,即42+(4-2t)2=(4-t)2+(2t)2.
解得t=-4±4 ,其中t=-4-4 <0不合题意,舍去,∴t=-4+4 .
③若QD=PQ,则QD2=PQ2,即16+t2=(4-t)2+(2t)2,解得t=0或t=2,
∴t= 或t=-4+4 或t=0或t=2时,△PQD是等腰三角形.

(3)当P在CD上运动时,若⊙P经过BC的中点E,设⊙P切BD于M.
则CP=2t-4,PM2=PE2=(2t-4)2+22.
而在Rt△PMD中,由于∠PDM=45°,所以DP= PM,即DP2=2PM2.
∴(8-2t)2=2[(2t-4)2+22].
解得t=± ,负值舍去,
∴t= ,
若⊙P经过CD的中点,⊙P的半径r=2( -1),
故t=2+ ,
∴当点P在CD上运动时,若t= 或2+ ,则⊙P恰好经过正方形ABCD的某一边的中点.

看我这么辛苦的分上,多给点吧
追问
其他网站上的答案不准,注意是“当点P在沿B→C→D上运动时”,不是“当点P在沿CD上运动时”
追答
就是这个方向运动的啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友51ca59f68d
2013-02-12
知道答主
回答量:27
采纳率:0%
帮助的人:8.9万
展开全部
4个答案,我做出来4个。P在BC上可以经过BC中点,亦可以经过CD中点啊!同理,P在CD上经过CD中点,也可以经过BC中点4个答案:2+根号2,2-根号2,4-根号6,根号6。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zcxmds
2012-01-02
知道答主
回答量:10
采纳率:0%
帮助的人:1.6万
展开全部
{1}S=-[t+4]^2-32
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
qq1131749732
2012-01-02
知道答主
回答量:31
采纳率:0%
帮助的人:7.6万
展开全部
111111111.............................................
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式