已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另
已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC...
已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?
展开
展开全部
(1)证明:连接C01
∵AC为⊙O2直径
∴∠AO1C=90°
即CO1⊥AD,
∵AO1=DO1
∴DC=AC(垂直平分线的性质);
(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,
∵四边形AEDB内接于⊙O1,
∴∠E+∠ABD=180°,
∵∠ABC+∠ABD=180°,
∴∠ABC=∠E,
又∵
=
,∴∠ABC=∠AO1C,
∴∠E=∠AO1C,
∴CO1∥ED,
又AE为⊙O1的直径,∴ED⊥AD,
∴O1C⊥AD,
(3)(2)中的结论仍然成立.
证明:
连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,
∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,
∴∠B=∠EO1C,
又∵∠E=∠B,
∴∠EO1C=∠E,
∴CO1∥ED,又ED⊥AD,
∴CO1⊥AD.
∵AC为⊙O2直径
∴∠AO1C=90°
即CO1⊥AD,
∵AO1=DO1
∴DC=AC(垂直平分线的性质);
(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,
∵四边形AEDB内接于⊙O1,
∴∠E+∠ABD=180°,
∵∠ABC+∠ABD=180°,
∴∠ABC=∠E,
又∵
AC |
AC |
∴∠E=∠AO1C,
∴CO1∥ED,
又AE为⊙O1的直径,∴ED⊥AD,
∴O1C⊥AD,
(3)(2)中的结论仍然成立.
证明:
连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,
∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,
∴∠B=∠EO1C,
又∵∠E=∠B,
∴∠EO1C=∠E,
∴CO1∥ED,又ED⊥AD,
∴CO1⊥AD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询