知识回顾:(1)如图1,在△ABC中,点D、E、F分别是边AB、BC、AC的中点,我们把△DEF称为△ABC的中点三角
知识回顾:(1)如图1,在△ABC中,点D、E、F分别是边AB、BC、AC的中点,我们把△DEF称为△ABC的中点三角形.则S△DEF:S△ABC=______;(2)如...
知识回顾:(1)如图1,在△ABC中,点D、E、F分别是边AB、BC、AC的中点,我们把△DEF称为△ABC的中点三角形.则S△DEF:S△ABC=______;(2)如图2,在正方形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,我们把四边形EFGH称为正方形ABCD的中点四边形,此时四边形EFGH的形状是______,S四边形EFGH:S四边形ABCD=______;(3)实践探究:如图3,在正五边形ABCDE中,若点F、G、H、M、N分别是边AB、BC、CD、DE、EA的中点,则中点五边形FGHMN的形状是______;若正五边形ABCDE的中心为点O,连接OE、ON,求S五边形FGHMN:S五边形ABCDE的值.(4)拓展归纳:在正n边形A1A2 …An中,若点B1、B2 …Bn分别是边A1A2、A2A3、…、AnA1的中点,则中点n边形B1B2 …Bn的面积与正n边形A1A2 …An的面积之比为Sn边形B1B2…Bn:Sn边形A1A2…An=______.
展开
1个回答
展开全部
(1)1:4;(1分)
(2)正方形;1:2;(3分)
(3)实践探究:正五边形.(4分)
解:设OE交NM于点K,则可得∠ONE=90°,∠OKN=90°,
又∵∠NOE为公共角,
∴△KON∽△NOE.
设△KON的面积为S1,△NOE的面积为S2,
则
=(
)2.(6分)
∵∠OEN=
∠MEN=
×
=54°,
∴∠EON=36°.
∴
=(
)2=sin254°(或cos236°).
∴S五边形FGHMN:S五边形ABCDE=S1:S2=sin254°(或cos236°)(8分)
(4)拓展归纳:Sn边形B1B2Bn:Sn边形A1A2An=sin2[
]°(或cos2(
)°)(10分)
(2)正方形;1:2;(3分)
(3)实践探究:正五边形.(4分)
解:设OE交NM于点K,则可得∠ONE=90°,∠OKN=90°,
又∵∠NOE为公共角,
∴△KON∽△NOE.
设△KON的面积为S1,△NOE的面积为S2,
则
S1 |
S2 |
ON |
OE |
∵∠OEN=
1 |
2 |
1 |
2 |
(5?2)×180° |
5 |
∴∠EON=36°.
∴
S1 |
S2 |
ON |
OE |
∴S五边形FGHMN:S五边形ABCDE=S1:S2=sin254°(或cos236°)(8分)
(4)拓展归纳:Sn边形B1B2Bn:Sn边形A1A2An=sin2[
90(n?2) |
n |
180 |
n |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询