线性代数 二次型化为标准型时候求出来的基础解系怎么判断用不用正交化 还有怎么看哪几个基础解系需要
线性代数二次型化为标准型时候求出来的基础解系怎么判断用不用正交化还有怎么看哪几个基础解系需要正交化这道题用吗?...
线性代数 二次型化为标准型时候求出来的基础解系怎么判断用不用正交化 还有怎么看哪几个基础解系需要正交化 这道题用吗?
展开
展开全部
实对称矩阵不同特征值对应的特征向量必然正交啊,不需要正交化了~
我们以二次型矩阵A的特征矩阵为基础,利用正交化法进行变换,思路是正交矩阵(AAT=E)的转置等于逆,利用正交矩阵使A对角化(以特征值为对角线元素的对角矩阵)。
注意:正交矩阵不同列内积均为0,也就是列向量正交,且每列元素平方和均为1,也就是单位化,矩阵列向量正交不代表矩阵就是正交矩阵!
分两种情况:
二次型矩阵A是实对称矩阵(必可对角化),如果其特征值λ互异,那么对应特征向量必正交(对角称矩阵的性质),由其构成的矩阵只需单位化(列向量分别除以模),就可得到正交变换矩阵;
否则,二次型矩阵A相同特征值对应的特征向量,取基础解系构成矩阵,需要施密特正交变换(正交化),然后单位化(勿忘!)。
变换的结果是特征值λ为系数的标准型。
我们以二次型矩阵A的特征矩阵为基础,利用正交化法进行变换,思路是正交矩阵(AAT=E)的转置等于逆,利用正交矩阵使A对角化(以特征值为对角线元素的对角矩阵)。
注意:正交矩阵不同列内积均为0,也就是列向量正交,且每列元素平方和均为1,也就是单位化,矩阵列向量正交不代表矩阵就是正交矩阵!
分两种情况:
二次型矩阵A是实对称矩阵(必可对角化),如果其特征值λ互异,那么对应特征向量必正交(对角称矩阵的性质),由其构成的矩阵只需单位化(列向量分别除以模),就可得到正交变换矩阵;
否则,二次型矩阵A相同特征值对应的特征向量,取基础解系构成矩阵,需要施密特正交变换(正交化),然后单位化(勿忘!)。
变换的结果是特征值λ为系数的标准型。
展开全部
两向量正交,即对应元素相乘后乘积只和为0,则正交。不同特征值的特征向量需正交,同一特征值的不同特征向量需正交。该题需正交化。
更多追问追答
追问
三个都正交吗?
追答
1和2不正交
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
实对称矩阵要正交化,不是实对称矩阵就不用了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询