如图,四边形ABCD是边长为32的正方形,长方形AEFG的宽AE=72,长EF=723.将长方形AEFG绕点A顺时针旋转15°

如图,四边形ABCD是边长为32的正方形,长方形AEFG的宽AE=72,长EF=723.将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH(如图),这时BD与MN相... 如图,四边形ABCD是边长为32的正方形,长方形AEFG的宽AE=72,长EF=723.将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH(如图),这时BD与MN相交于点O.(1)求∠DOM的度数;(2)在图中,求D、N两点间的距离;(3)若把长方形AMNH绕点A再顺时针旋转15°得到长方形ARTZ,请问此时点B在矩形ARTZ的内部、外部、还是边上?并说明理由. 展开
 我来答
220398521
推荐于2016-01-25 · TA获得超过426个赞
知道答主
回答量:124
采纳率:0%
帮助的人:126万
展开全部
(1)根据题意得:∠BAM=15°,
∵四边形AMNH是矩形,
∴∠M=90°,
∴∠AKM=90°-∠BAM=75°,
∴∠BKO=∠AKM=75°,
∵四边形ABCD是正方形,
∴∠ABD=45°,
∴∠DOM=∠BKO+∠ABD=75°+45°=120°;

(2)连接AN,交BD于I,连接DN,
∵NH=
7
2
,AH=
7
2
3
,∠H=90°,
∴tan∠HAN=
NH
AH
=
3
3

∴∠HAN=30°,
∴AN=2NH=7,
由旋转的性质:∠DAH=15°,
∴∠DAN=45°,
∵∠DAC=45°,
∴A,C,N共线,
∵四边形ABCD是正方形,
∴BD⊥AC,
∵AD=CD=3
2

∴DI=AI=
1
2
AC=
1
2
AB2+CD2
=3,
∴NI=AN-AI=7-3=4,
在Rt△DIN中,DN=
DI2+NI2
=5;

(3)点B在矩形ARTZ的外部.
理由:如图,根据题意得:∠BAR=15°+15°=30°,
∵∠R=90°,AR=
7
2

∴AK=
AR
cos30°
=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式