已知函数f(x)=alnx+1/2x²-(1+a)x ⑴ 求函数f(x)的单调区间 (

已知函数f(x)=alnx+1/2x²-(1+a)x⑴求函数f(x)的单调区间(2)若函数f(x)≥0对定义域内的任意x恒成立,求实数a的取值范围;... 已知函数f(x)=alnx+1/2x²-(1+a)x ⑴ 求函数f(x)的单调区间

(2) 若函数f(x)≥0对定义域内的任意x恒成立,求实数a的取值范围;
展开
傅靳文
2014-11-19 · TA获得超过2.2万个赞
知道大有可为答主
回答量:4719
采纳率:83%
帮助的人:745万
展开全部
解:(Ⅰ)求导数可得f′(x)=(x-a)(x-1)/x (x>0)
(1)a≤0时,令f′(x)<0,可得x<1,∵x>0,∴0<x<1;令f′(x)>0,可得x>1,∵x>0,∴x>1
∴函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;
(2)0<a<1时,令f′(x)<0,可得a<x<1,∵x>0,∴a<x<1;令f′(x)>0,可得x<a或x>1,∵x>0,∴0<x<a或x>1
∴函数f(x)在(0,a),(1,+∞)上单调递增,在(a,1)上单调递减;
(3)a=1时,f′(x)≥0,函数在(0,+∞)上单调递增;
(4)a>1时,令f′(x)<0,可得1<x<a,∵x>0,∴1<x<a;令f′(x)>0,可得x>a或x<1,∵x>0,∴0<x<1或x>a
∴函数f(x)在(0,1),(a,+∞)上单调递增,在(1,a)上单调递减;
(Ⅱ)a≥0时,f(1)=-1/2 -a<0,舍去;
a<0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴函数在x=1处取得最小值,
∵函数f(x)≥0对定义域内的任意的x恒成立,
∴f(1)=- 1/2-a≥0,可得a≤- 1/2
孤独的狼070
2014-11-19 · 知道合伙人教育行家
孤独的狼070
知道合伙人教育行家
采纳数:6486 获赞数:37407
跨境电商优秀员工

向TA提问 私信TA
展开全部
请问是急着要吗
更多追问追答
追问
是的,很急!
追答
已经有人给你解答了,看上去还那么仔细,你可以去看一下
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式