已知函数f(x)=ex(ax2+a+1)(a∈R).(Ⅰ)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;
已知函数f(x)=ex(ax2+a+1)(a∈R).(Ⅰ)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若在区间[-2,-1]上,f(x)≥2e2...
已知函数f(x)=ex(ax2+a+1)(a∈R).(Ⅰ)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若在区间[-2,-1]上,f(x)≥2e2恒成立,求实数a的取值范围.
展开
1个回答
展开全部
(Ⅰ)当a=-1时,f(x)=-exx2,f(1)=-e.
f′(x)=-(x2+2x)ex,则k=f′(1)=-3e.
∴切线方程为:y+e=-3e(x-1),即y=-3ex+2e.
(Ⅱ)由f(?2)=e?2(4a+a+1)≥
,得:a≥
.
f′(x)=ex(ax2+2ax+a+1)=ex[a(x+1)2+1].
∵a≥
,∴f′(x)>0恒成立,故f(x)在[-2,-1]上单调递增,
要使f(x)≥
恒成立,则f(?2)=e?2(4a+a+1)≥
,解得a≥
.
f′(x)=-(x2+2x)ex,则k=f′(1)=-3e.
∴切线方程为:y+e=-3e(x-1),即y=-3ex+2e.
(Ⅱ)由f(?2)=e?2(4a+a+1)≥
2 |
e2 |
1 |
5 |
f′(x)=ex(ax2+2ax+a+1)=ex[a(x+1)2+1].
∵a≥
1 |
5 |
要使f(x)≥
2 |
e2 |
2 |
e2 |
1 |
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询