大神,数学题,过程详细一点,谢谢,有下划线的题,谢谢了
1个回答
展开全部
4、原式=∫x(sec^2x-1)dx
=∫xsec^2xdx-∫xdx
=∫xd(tanx)-x^2/2
=xtanx-∫tanxdx-x^2/2
=xtanx-x^2/2-ln(secx)+C
5、原式=xln^2x-∫xd(ln^2x)
=xln^2x-∫2lnxdx
=xln^2x-2xlnx+∫2xd(lnx)
=xln^2x-2xlnx+2x+C
8、原式=∫ln^2xd(x^4/4)
=(x^4/4)ln^2x-∫(x^3/2)*lnxdx
=(x^4/4)ln^2x-∫lnxd(x^4/8)
=(x^4/4)ln^2x-(x^4/8)lnx+∫(x^3/8)dx
=(x^4/4)ln^2x-(x^4/8)lnx+x^4/32+C
=∫xsec^2xdx-∫xdx
=∫xd(tanx)-x^2/2
=xtanx-∫tanxdx-x^2/2
=xtanx-x^2/2-ln(secx)+C
5、原式=xln^2x-∫xd(ln^2x)
=xln^2x-∫2lnxdx
=xln^2x-2xlnx+∫2xd(lnx)
=xln^2x-2xlnx+2x+C
8、原式=∫ln^2xd(x^4/4)
=(x^4/4)ln^2x-∫(x^3/2)*lnxdx
=(x^4/4)ln^2x-∫lnxd(x^4/8)
=(x^4/4)ln^2x-(x^4/8)lnx+∫(x^3/8)dx
=(x^4/4)ln^2x-(x^4/8)lnx+x^4/32+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询