3个回答
展开全部
解:若为∫(1.+∞) (1+x)/x^2dx=∫(1.+∞) (1/x^2+1/x)dx=(-1/x+ln|x|)|(1.+∞))=+∞
若为∫(1.+∞) 1/[x^2*(1+x)]dx
待定系数法:
设1/[x^2*(1+x)]=a/x^2+b/x+c/(1+x)
则有
1=a(1+x)+bx(1+x)+cx^2=f(x)
由f(0)=1=a得a=1
f(-1)=1=c得c=1
于是有恒等式1=(1+x)+bx(1+x)+x^2成立,显然b=-1。于是有
1/[x^2*(1+x)]=1/x^2-1/x+1/(1+x)
则∫(1.+∞) 1/[x^2*(1+x)]dx=∫(1.+∞) 1/[x^2*(1+x)]dx
=∫(1.+∞) [1/x^2-1/x+1/(1+x)]dx
=[-1/x+ln|(1+x)/x|] |(1.+∞)
=-(0-1)+ln1-ln2]=1-ln2
关键是用待定系数法将分式进行最简化分解。希望能帮到你
若为∫(1.+∞) 1/[x^2*(1+x)]dx
待定系数法:
设1/[x^2*(1+x)]=a/x^2+b/x+c/(1+x)
则有
1=a(1+x)+bx(1+x)+cx^2=f(x)
由f(0)=1=a得a=1
f(-1)=1=c得c=1
于是有恒等式1=(1+x)+bx(1+x)+x^2成立,显然b=-1。于是有
1/[x^2*(1+x)]=1/x^2-1/x+1/(1+x)
则∫(1.+∞) 1/[x^2*(1+x)]dx=∫(1.+∞) 1/[x^2*(1+x)]dx
=∫(1.+∞) [1/x^2-1/x+1/(1+x)]dx
=[-1/x+ln|(1+x)/x|] |(1.+∞)
=-(0-1)+ln1-ln2]=1-ln2
关键是用待定系数法将分式进行最简化分解。希望能帮到你
展开全部
被积函数分解为1/(1+x)-1/x+1/x^2,原函数是ln(1+x)-lnx-1/x=ln(1+1/x)-1/x,当x趋于无穷时极限是0,当x=1时值为ln2-1,因此积分值是1-ln2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询