设S为平面x+y+z=1位于球面x^2+y^2+z^2=1内的上侧 则曲面积分(x-y)dydz+
设S为平面x+y+z=1位于球面x^2+y^2+z^2=1内的上侧则曲面积分(x-y)dydz+(y-z)dzdx+(z-x)dxdy=...
设S为平面x+y+z=1位于球面x^2+y^2+z^2=1内的上侧 则曲面积分(x-y)dydz+(y-z)dzdx+(z-x)dxdy=
展开
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)+提问者悬赏10(财富值+成长值)
1个回答
推荐于2016-04-26
展开全部
设s(x)=Σx^2n/(2n)!
s'(x)=Σx^2n-1/(2n-1)!
s''(x)=Σx^2n/(2n)!=s(x)
s''(x)-s(x)=0
r²-1=0
r1=1,r2=-1
s(x)=c1e^x+c2e^(-x)
s'(x)=c1e^x-c2e^(-x)
s(0)=1
s'(0)=0
c1+c2=1
c1-c2=0
c1=c2=1/2
即
s(x)=[e^x+e^(-x)]/2
s'(x)=Σx^2n-1/(2n-1)!
s''(x)=Σx^2n/(2n)!=s(x)
s''(x)-s(x)=0
r²-1=0
r1=1,r2=-1
s(x)=c1e^x+c2e^(-x)
s'(x)=c1e^x-c2e^(-x)
s(0)=1
s'(0)=0
c1+c2=1
c1-c2=0
c1=c2=1/2
即
s(x)=[e^x+e^(-x)]/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询