怎么求联合分布律
F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)
称为:二维随机变量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。
随机变量X和Y的联合分布函数是设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)称为二维随机变量(X,Y)的分布函数。
扩展资料:
二维变量
设E是一个随机试验,它的样本空间是S={e}。设X=X(e)和Y=Y(e)是定义在S上的随机变量,由它们构成的一个向量(X,Y),叫做二维随机向量或二维随机变量。
离散变量
对离散随机变量 X, Y 而言,联合分布概率密度函数如下:
因为是概率分布函数,所以必须满足以下条件:
参考资料来源:百度百科-联合分布
X ,Y是独立的,算出X=x的概率,Y=y的概率,直接相乘。
联合概率分布简称联合分布,是两个及以上随机变量组成的随机变量的概率分布。根据随机变量的不同,联合概率分布的表示形式也不同。对于离散型随机变量,联合概率分布可以以列表的形式表示,也可以以函数的形式表示;对于连续型随机变量,联合概率分布通过非负函数的积分表示。
随机变量:给定样本空间 ,其上的实值函数 称为(实值)随机变量。如果随机变量X的取值是有限的或者是可数无穷尽的值,则称X为离散随机变量。如果X是由全部实数或者由一部分区间组成,则称X为连续随机变量,连续随机变量的值是不可数及无穷尽的。随机变量分为离散型随机变量和连续型随机变量,当要求随机变量的概率分布的时候,要分别处理。
1. 离散型联合概率分布:
对于二维离散随机向量,设X和Y都是离散型随机变量, 和 分别是X和Y的一切可能的几何,则X和Y的联合概率分布可以表示为如右图的列联表,也可以表示为如下的函数形式其中
多维随机变量的中,只包含部分变量的概率分布称为边缘分布:
2. 连续型联合概率分布:
对于二维连续随机向量,设X和Y为连续型随机变量,其联合概率分布,或连续型随机变的概率分布 通过一非负函数 的积分表示,称函数 为联合概率密度。两者的关系如下:
X ,Y是独立的,算出X=x的概率,Y=y的概率,直接相乘。具体回答如图:
根据随机变量的不同,联合概率分布的表示形式也不同。对于离散型随机变量,联合概率分布可以以列表的形式表示,也可以以函数的形式表示;对于连续型随机变量,联合概率分布通过非负函数的积分表示。
扩展资料:
在概率论中, 对两个随机变量X和Y,其联合分布是同时对于X和Y的概率分布。
如果随机变量X的取值是有限的或者是可数无穷尽的值,则称X为离散随机变量。如果X是由全部实数或者由一部分区间组成,则称X为连续随机变量,连续随机变量的值是不可数及无穷尽的。
随机变量分为离散型随机变量和连续型随机变量,当要求随机变量的概率分布的时候,要分别处理。
随机变量X和Y的联合分布函数是设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)称为二维随机变量(X,Y)的分布函数。
如果将二维随机变量(X,Y)看成是平面上随机点的坐标,那么分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以点(x,y)为顶点而位于该点左下方的无穷矩形域内的概率。
参考资料来源:百度百科——联合概率分布