这个高数题怎么做啊?拜大神帮忙...题目如下,告诉我怎么做的哈~

函数f(x)满足∫xf(x)dx=-xcosx+sinx+C,C为任意常数,则∫f(x)lnsecxdx=?... 函数f(x)满足∫xf(x)dx=-xcosx+sinx+C,C为任意常数,则∫f(x)lnsecxdx=? 展开
whisper168
2012-01-04 · 用流程的确定性代替业务的不确定性
whisper168
采纳数:394 获赞数:3523

向TA提问 私信TA
展开全部
1)对∫xf(x)dx=-xcosx+sinx+C两边求导 得到:xf(x)=xsinx 可知 f(x)=sinx
2)把f(x)=sinx带入∫f(x)lnsecxdx得到,∫lncosxdcosx 在带入lnx的积分式子(其实自己分部积分也能得到):∫lnxdx=xlnx-∫xd(lnx)=xlnx-∫dx=x(lnx-1)+C
于是得到结果为:cosx(lncosx-1)+C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式