求微分方程xy’+x+y=0满足初始条件y(1)=0的特解
展开全部
xy'+y=0,
分离变量得dy/y=-dx/x,
积分得lny=lnc-lnx,
∴y=c/x,
由y(1)=2得c=2,
∴y=2/x,为所求。
扩展资料
二阶常系数线性微分方程形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。
若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。
展开全部
解:∵xy'+x+y=0 ==>xy'+y=-x
==>(xy)'=-x
==>xy=-x²/2+C (C是积分常数)
∴原方程的通解是y=C/x-x/2 (C是积分常数)
∵y(1)=0,即当x=1时,y=0
代入通解得C-1/2=0,==>C=1/2
∴微分方程xy'+x+y=0满足初始条件y(1)=0的特解是y=1/(2x)-x/2=(1/x-x)/2。
==>(xy)'=-x
==>xy=-x²/2+C (C是积分常数)
∴原方程的通解是y=C/x-x/2 (C是积分常数)
∵y(1)=0,即当x=1时,y=0
代入通解得C-1/2=0,==>C=1/2
∴微分方程xy'+x+y=0满足初始条件y(1)=0的特解是y=1/(2x)-x/2=(1/x-x)/2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
此微分方程为可分离变量的微分方程
原方程可化为
(xy)'+x=0
设u=xy
则u'+x=0
故u=-x²/2+C
即y=C/x-x/2
原方程可化为
(xy)'+x=0
设u=xy
则u'+x=0
故u=-x²/2+C
即y=C/x-x/2
追问
哥...我们在考试 救命用 正确率有保证不
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询