八年级数学几何题
已知:△ABC是等边三角形,延长BC至D,延长BA至E。使AE=BD,连接CE、DE。求证:CE=DE...
已知:△ABC是等边三角形,延长BC至D,延长BA至E。使AE=BD,连接CE、DE。求证:CE=DE
展开
1个回答
展开全部
证明:(方法一)延长CD到F,使DF=BC,连结EF
∵AE=BD
∴AE=CF
∵DABC为正三角形
∴BE=BF 角B=60°
∴DEBF为等边三角形
∴角F=60° EF=EB
在DEBC和DEFD中
EB=EF(已证)
角B=角F(已证)
BC=DF(已作)
∴三角形EBC≌三角形EFD (SAS)
∴EC=ED (全等三角形对应边相等)
(方法二)过D作DF‖AC交AE于F
∴角1=角2 (两直线平行,同位角相等)
∴角3=角4=60°
∵三角形ABC为等边三角形
∴角B=60°
∴三角形FBD为等边三角形
∴FD=BD
∵BD=AE
∴AE=FD
∴BF=BD=AE
∴BF=AE
∴BF-AF=AE-AF (等量减等量差相等)
∴AB=EF ∴EF=AC
在三角形EAC和三角形DFE中
AE=FD(已证)
角1=角2(已证)
AC=EF(已证)
∴三角形EAC≌三角形DFE
∴EC=ED (全等三角形对应边相等
∵AE=BD
∴AE=CF
∵DABC为正三角形
∴BE=BF 角B=60°
∴DEBF为等边三角形
∴角F=60° EF=EB
在DEBC和DEFD中
EB=EF(已证)
角B=角F(已证)
BC=DF(已作)
∴三角形EBC≌三角形EFD (SAS)
∴EC=ED (全等三角形对应边相等)
(方法二)过D作DF‖AC交AE于F
∴角1=角2 (两直线平行,同位角相等)
∴角3=角4=60°
∵三角形ABC为等边三角形
∴角B=60°
∴三角形FBD为等边三角形
∴FD=BD
∵BD=AE
∴AE=FD
∴BF=BD=AE
∴BF=AE
∴BF-AF=AE-AF (等量减等量差相等)
∴AB=EF ∴EF=AC
在三角形EAC和三角形DFE中
AE=FD(已证)
角1=角2(已证)
AC=EF(已证)
∴三角形EAC≌三角形DFE
∴EC=ED (全等三角形对应边相等
追问
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询