如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE.
3个回答
展开全部
1、证明:
取BC中点O,连接OE
∵DE⊥BE,镇亮O为BC中点
∴以O为圆心,以BO为半径的圆是△BDE的外接圆
∴OE=OB
∴∠OEB=∠OBE
∵BE平分∠ABC
∴∠ABE=∠CBE
∴∠OEB=∠CBE
∴OE∥BC
∵∠C=御启宽90
∴∠AEO=90
∴AC是圆O的切线
∴AC是△BDE的外接圆的切线
2、解:设圆O半径为X
则OE=OD=旁喊X
∵∠AEO=90
∴AE²+OE²=AO²
∵AD=2√6
∴AO=AD+OD=2√6+X
∵AE=6√2
∴(6√2)²+X²=(2√6+X)²
72+X²=24+4√6X+X²
X=2√6
∴BD=2OD=2X=4√6
取BC中点O,连接OE
∵DE⊥BE,镇亮O为BC中点
∴以O为圆心,以BO为半径的圆是△BDE的外接圆
∴OE=OB
∴∠OEB=∠OBE
∵BE平分∠ABC
∴∠ABE=∠CBE
∴∠OEB=∠CBE
∴OE∥BC
∵∠C=御启宽90
∴∠AEO=90
∴AC是圆O的切线
∴AC是△BDE的外接圆的切线
2、解:设圆O半径为X
则OE=OD=旁喊X
∵∠AEO=90
∴AE²+OE²=AO²
∵AD=2√6
∴AO=AD+OD=2√6+X
∵AE=6√2
∴(6√2)²+X²=(2√6+X)²
72+X²=24+4√6X+X²
X=2√6
∴BD=2OD=2X=4√6
展开全部
(1)证明:∠BED=90°,则BD为⊿BED外接睁如圆的直径,取BD的悉冲启中点O,连接OE.
∵OE=OB.
∴∠OEB=∠OBE;又∠CBE=∠OBE(已知)
∴∠OEB=∠CBE,得OE∥BC.
故∠AEO=∠C=90°,即AC是⊿BDE外接圆的切线.
(2)解:∵∠AED+∠CEB=90°;∠CBE+∠CEB=90°.
∴∠AED=∠CBE;又∠ABE=∠CBE.
∴∠AED=∠ABE;
又∵∠A=∠A.
∴⊿AED∽⊿ABE,AE/AD=AB/AE,(6√2)/(2√6)=AB/(6√2),AB=6√6.
故BD=AB-AD=6√6-2√6=4√判山6.
∵OE=OB.
∴∠OEB=∠OBE;又∠CBE=∠OBE(已知)
∴∠OEB=∠CBE,得OE∥BC.
故∠AEO=∠C=90°,即AC是⊿BDE外接圆的切线.
(2)解:∵∠AED+∠CEB=90°;∠CBE+∠CEB=90°.
∴∠AED=∠CBE;又∠ABE=∠CBE.
∴∠AED=∠ABE;
又∵∠A=∠A.
∴⊿AED∽⊿ABE,AE/AD=AB/AE,(6√2)/(2√6)=AB/(6√2),AB=6√6.
故BD=AB-AD=6√6-2√6=4√判山6.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)取猜凯BD中点O,连接OE,由题知BD为半圆BDE直径,∠DOE=2∠DBE,BE为角平分线,所芦中以∠DOE=∠ABC,所以OE平行于BC。因为DE⊥BE,所以OE⊥陪兆山AC。所以AC是△BDE的外接圆的切线
(2)设OE为x
x²+AE²=(AD+x)²
BD=2x
(2)设OE为x
x²+AE²=(AD+x)²
BD=2x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询