高中数学解析几何一道题

在等腰梯形ABCD中,AB//CD,且AB=2AD,设∠DAB=Θ,Θ∈(0,π/2),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率... 在等腰梯形ABCD中,AB//CD,且AB=2AD,设∠DAB=Θ,Θ∈(0,π/2),以A, B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为 e2,随着Θ增大e1的变化趋势(增or减)?e1e2的值?麻烦给出详细解释,感激不尽 展开
暖眸敏1V
2012-01-05 · TA获得超过9.6万个赞
知道大有可为答主
回答量:1.8万
采纳率:90%
帮助的人:9722万
展开全部
不妨令AB=4,AD=2,
CD=4-4cosθ,
ΔABD中,余弦定理得:BD=√(20-16cosθ)=2√(5-4cosθ)
在双曲线中:c=2, 2a=BD-AD=2√(5-4cosθ)-2
e₁=c/a=2/[√(5-4cosθ)-1]
在椭圆中:c=2-2cosθ,2a=BC+BD= 2√(5-4cosθ)+2
e₂=c /a=(1-cosθ)/[√(5-4cosθ)+1]
e₁ e₂=2(1-cosθ)/(4-4cosθ)=1
e₁=c/a=2/[√(5-4cosθ)-1]中:
θ∈(0,π/2),cosθ递减,5-4cosθ递增,√(5-4cosθ)-1递增, ∴e₁递减,
∵ e₁ e₂=1, ∴ e₂递增
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式