高中数学解析几何一道题
在等腰梯形ABCD中,AB//CD,且AB=2AD,设∠DAB=Θ,Θ∈(0,π/2),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率...
在等腰梯形ABCD中,AB//CD,且AB=2AD,设∠DAB=Θ,Θ∈(0,π/2),以A, B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为 e2,随着Θ增大e1的变化趋势(增or减)?e1e2的值?麻烦给出详细解释,感激不尽
展开
展开全部
不妨令AB=4,AD=2,
CD=4-4cosθ,
ΔABD中,余弦定理得:BD=√(20-16cosθ)=2√(5-4cosθ)
在双曲线中:c=2, 2a=BD-AD=2√(5-4cosθ)-2
e₁=c/a=2/[√(5-4cosθ)-1]
在椭圆中:c=2-2cosθ,2a=BC+BD= 2√(5-4cosθ)+2
e₂=c /a=(1-cosθ)/[√(5-4cosθ)+1]
e₁ e₂=2(1-cosθ)/(4-4cosθ)=1
e₁=c/a=2/[√(5-4cosθ)-1]中:
θ∈(0,π/2),cosθ递减,5-4cosθ递增,√(5-4cosθ)-1递增, ∴e₁递减,
∵ e₁ e₂=1, ∴ e₂递增
CD=4-4cosθ,
ΔABD中,余弦定理得:BD=√(20-16cosθ)=2√(5-4cosθ)
在双曲线中:c=2, 2a=BD-AD=2√(5-4cosθ)-2
e₁=c/a=2/[√(5-4cosθ)-1]
在椭圆中:c=2-2cosθ,2a=BC+BD= 2√(5-4cosθ)+2
e₂=c /a=(1-cosθ)/[√(5-4cosθ)+1]
e₁ e₂=2(1-cosθ)/(4-4cosθ)=1
e₁=c/a=2/[√(5-4cosθ)-1]中:
θ∈(0,π/2),cosθ递减,5-4cosθ递增,√(5-4cosθ)-1递增, ∴e₁递减,
∵ e₁ e₂=1, ∴ e₂递增
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询