高数:求极限,一共五个,答案分别是2 cosα 1 e的负二分之三次方 二分之一,要过程,谢谢
1个回答
展开全部
lim(x->1)[√(5x-4) -√x]/(x-1)
=lim(x->1)(4x-4)/{ (x-1)[√(5x-4) +√x] }
=lim(x->1)4/[√(5x-4) +√x]
=4/(1+1)
=2
(2)
lim(x->α) (sinx- sinα)/(x- α) (0/0)
=lim(x->α) cosx
=cosα
(3)
lim(x-> ∞)[√(x^2+x) -√(x^2-x)]
=lim(x-> ∞)2x/[√(x^2+x) +√(x^2-x)]
=lim(x-> ∞)2/[√(1+1/x) +√(1-1/x)]
=2/(1+1)
=1
(4)
lim(x->∞) [( 3+x)/(6+x)]^ [(x-1)/2]
=lim(x->∞) [1 + 3/(6+x)]^ [(x-1)/2]
let
3/(6+x)= 1/y
3y= 6+x
x= 3y-6
lim(x->∞) [( 3+x)/(6+x)]^ [(x-1)/2]
=lim(x->∞) [1 + 3/(6+x)]^ [(x-1)/2]
=lim(y->∞) [1 + 1/y]^ [(3y-7)/2]
=e^(3/2)
=lim(x->1)(4x-4)/{ (x-1)[√(5x-4) +√x] }
=lim(x->1)4/[√(5x-4) +√x]
=4/(1+1)
=2
(2)
lim(x->α) (sinx- sinα)/(x- α) (0/0)
=lim(x->α) cosx
=cosα
(3)
lim(x-> ∞)[√(x^2+x) -√(x^2-x)]
=lim(x-> ∞)2x/[√(x^2+x) +√(x^2-x)]
=lim(x-> ∞)2/[√(1+1/x) +√(1-1/x)]
=2/(1+1)
=1
(4)
lim(x->∞) [( 3+x)/(6+x)]^ [(x-1)/2]
=lim(x->∞) [1 + 3/(6+x)]^ [(x-1)/2]
let
3/(6+x)= 1/y
3y= 6+x
x= 3y-6
lim(x->∞) [( 3+x)/(6+x)]^ [(x-1)/2]
=lim(x->∞) [1 + 3/(6+x)]^ [(x-1)/2]
=lim(y->∞) [1 + 1/y]^ [(3y-7)/2]
=e^(3/2)
追问
第二个是为什么?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询