如图,AB为圆O的直径,C为圆O上的一点,AD和过点C的切线相互垂直,垂足为D。
展开全部
证明:连接OC,因为C为切点,所以OC⊥DC
∵AD⊥DC,∴AD平行OC,∴∠DAC=∠ACO
∵OA=OC,∴∠ACO=∠CAO
∴∠CAO=∠DAC
∴AC平分∠CAB
2.
∵∠DAC=∠CAB,∠DCA=∠B,∠CAB+∠B=90°
∴∠DCA+∠DAC=90° (等量代换)
即AD与过点C的切线互相垂直
∵∠DCA=∠B,∠DAC=∠CAB
∴△DAC∽△CAB
∴AD/AC=AC/AB
即AC²=AD*AB=20
∴AC=2√5
∵AD⊥DC,∴AD平行OC,∴∠DAC=∠ACO
∵OA=OC,∴∠ACO=∠CAO
∴∠CAO=∠DAC
∴AC平分∠CAB
2.
∵∠DAC=∠CAB,∠DCA=∠B,∠CAB+∠B=90°
∴∠DCA+∠DAC=90° (等量代换)
即AD与过点C的切线互相垂直
∵∠DCA=∠B,∠DAC=∠CAB
∴△DAC∽△CAB
∴AD/AC=AC/AB
即AC²=AD*AB=20
∴AC=2√5
追问
是求AB
追答
那不一样吗AC²=AD*AB 求出25/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:连接CO. 则∠ACO=∠CAO(等腰三角形,两地角相等)∵CD与圆相切,∴CO⊥CD. 又∵AD⊥CD AD CO ∴∠DOC=∠ACO(两直线平行,内错角相等)∠DAC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询