已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.
若连接AM,则AM是否平分∠BAD?(∠1=∠2)请你证明你的结论.图片网址?t=1325897680023...
若连接AM,则AM是否平分∠BAD?(∠1=∠2)请你证明你的结论.图片网址
?t=1325897680023 展开
?t=1325897680023 展开
3个回答
展开全部
已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.
(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;
(2)线段DM与AM有怎样的位置关系?请说明理由.考点:角平分线的性质.专题:证明题;探究型.分析:(1)过点M作ME⊥AD,垂足为E,先求出ME=MC,再求出ME=MB,从而证明AM平分∠DAB;
(2)利用两直线平行同旁内角互补可得∠1+∠3=90°,所以两直线垂直.解答:解:(1)AM平分∠DAB.
证明:过点M作ME⊥AD,垂足为E,
∵DM平分∠ADC
∴∠1=∠2,MC⊥CD,ME⊥AD,
∴ME=MC(角平分线上的点到角两边的距离相等),
又∵MC=MB,∴ME=MB,
∵MB⊥AB,ME⊥AD,
∴AM平分∠DAB(到角的两边距离相等的点在这个角的平分线上).
(2)AM⊥DM,理由如下:
∵∠B=∠C=90°,
∴DC⊥CB,AB⊥CB,
∴CD∥AB(垂直于同一条直线的两条直线平行),
∴∠CDA+∠DAB=180°(两直线平行,同旁内角互补)
又∵∠1=1 2 ∠CDA,∠3=1 2 DAB(角平分线定义)
∴2∠1+2∠3=180°,∴∠1+∠3=90°,
∴∠AMD=90度.即AM⊥DM.点评:本题主要考查了垂直平分线上的点到线段两端的距离相等的性质和它的逆定理,及平行线的性质.正确作出辅助线是解答本题的关键
(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;
(2)线段DM与AM有怎样的位置关系?请说明理由.考点:角平分线的性质.专题:证明题;探究型.分析:(1)过点M作ME⊥AD,垂足为E,先求出ME=MC,再求出ME=MB,从而证明AM平分∠DAB;
(2)利用两直线平行同旁内角互补可得∠1+∠3=90°,所以两直线垂直.解答:解:(1)AM平分∠DAB.
证明:过点M作ME⊥AD,垂足为E,
∵DM平分∠ADC
∴∠1=∠2,MC⊥CD,ME⊥AD,
∴ME=MC(角平分线上的点到角两边的距离相等),
又∵MC=MB,∴ME=MB,
∵MB⊥AB,ME⊥AD,
∴AM平分∠DAB(到角的两边距离相等的点在这个角的平分线上).
(2)AM⊥DM,理由如下:
∵∠B=∠C=90°,
∴DC⊥CB,AB⊥CB,
∴CD∥AB(垂直于同一条直线的两条直线平行),
∴∠CDA+∠DAB=180°(两直线平行,同旁内角互补)
又∵∠1=1 2 ∠CDA,∠3=1 2 DAB(角平分线定义)
∴2∠1+2∠3=180°,∴∠1+∠3=90°,
∴∠AMD=90度.即AM⊥DM.点评:本题主要考查了垂直平分线上的点到线段两端的距离相等的性质和它的逆定理,及平行线的性质.正确作出辅助线是解答本题的关键
展开全部
∠1=∠2
证明:
延长DM,交AB的延长线于点E
∵AB∥CD
∴∠CDM=∠E
∵∠ADM=∠CDM
∴∠ADE=∠E
∴AD=AE
∵∠C=j6EBM,CM=BM
∴△CDM≌△BEM
∴EM=DM
∵AD=AE
∴∠1=∠2(等腰三角形三线合一)
证明:
延长DM,交AB的延长线于点E
∵AB∥CD
∴∠CDM=∠E
∵∠ADM=∠CDM
∴∠ADE=∠E
∴AD=AE
∵∠C=j6EBM,CM=BM
∴△CDM≌△BEM
∴EM=DM
∵AD=AE
∴∠1=∠2(等腰三角形三线合一)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∠1=∠2
证明:
延长DM,交AB的延长线于点E
∵AB∥CD
∴∠CDM=∠E
∵∠ADM=∠CDM
∴∠ADE=∠E
∴AD=AE
∵∠C=j6EBM,CM=BM
∴△CDM≌△BEM
∴EM=DM
∵AD=AE
∴∠1=∠2
证明:
延长DM,交AB的延长线于点E
∵AB∥CD
∴∠CDM=∠E
∵∠ADM=∠CDM
∴∠ADE=∠E
∴AD=AE
∵∠C=j6EBM,CM=BM
∴△CDM≌△BEM
∴EM=DM
∵AD=AE
∴∠1=∠2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询