一道几何题
(1)求证:△EGM为等腰三角形;
(2)判断线段BG、AF与FG的数量关系并证明你的结论。 展开
解:(1)∵等腰直角三角形ABC中,∠BAC=90°,
∴AC=AB,∠ACB=∠ABC=45°,
又∵AD=AE,∠CAD=∠BAE,
∴△ACD≌△ABE(SAS),
∴∠1=∠3,
∵∠BAC=90°,
∴∠3+∠2=90°,∠1+∠4=90°,
∴∠4+∠3=90°
∵FG⊥CD,
∴∠CMF+∠4=90°,
∴∠3=∠CMF,
∴∠GEM=∠GME,
∴EG=MG,△EGM为等腰三角形.
(2)线段BG、AF与FG的数量关系为BG=AF+FG.
过点B作AB的垂线,交GF的延长线于点N.(见右图)
∵BN⊥AB,∠ABC=45°,
∴∠FBN=45°=∠FBA.
∵FG⊥CD,
∴∠BFN=∠CFM=90°-∠DCB,
∵AF⊥BE,
∴∠BFA=90°-∠EBC,∠5+∠2=90°,
由(1)可得∠DCB=∠EBC,
∴∠BFN=∠BFA,
又∵BF=BF,
∴△BFN≌△BFA(ASA),
∴NF=AF,∠N=∠5,
又∵∠GBN+∠2=90°,
∴∠GBN=∠5=∠N,
∴BG=NG,
又∵NG=NF+FG,
∴BG=AF+FG.点评:本题考查全等三角形的判定及性质,难度较大,尤其是第二问的证明,要学会要判断三条线段之间的关系,一般都需要转化到同一条直线上进行,第二问另外还可以有如下解法,①设CD、BE的交点为N,连接AN(见下图).先证AF=BN,再证FG=NG,②过点C作AC的垂线,交AF的延长线于点H(见下图).先证AH=BE,再证FM=FH,同学们可以自己试一下.
∴AC=AB,∠ACB=∠ABC=45°,
又∵AD=AE,∠CAD=∠BAE,
∴△ACD≌△ABE(SAS),
∴∠1=∠3,
∵∠BAC=90°,
∴∠3+∠2=90°,∠1+∠4=90°,
∴∠4+∠3=90°
∵FG⊥CD,
∴∠CMF+∠4=90°,
∴∠3=∠CMF,
∴∠GEM=∠GME,
∴EG=MG,△EGM为等腰三角形.