∞是什么意思
∞是无穷大符号。
英国人沃利斯在论文《算术的无穷大》(1655年出版)一书中首次使用将8水平置放成"∞"来表示"无穷大"符号。
扩展资料
1、无限符号的由来
古希腊哲学家亚里士多德(Arixtote,公元前384-322)认为,无穷大可能是存在的,因为一个有限量是无限可分的是不能达到极点的,但是无限是世界上公认不能达到的。
12世纪,印度出现了一位伟大的数学家布哈斯克拉(Bhaskara),他的概念比较接近现代理论化的概念。
将8水平置放成"∞"来表示"无穷大"符号是在英国人沃利斯(John Wallis)的论文《算术的无穷大》(1655年出版)一书中首次提出的。
2、无限符号的等式
在数学中,有两个偶尔会用到的无限符号的等式,即:∞=∞+1,∞=∞×1。
某一正数值表示无限大的一种公式,没有具体数字,但是正无穷表示比任何一个数字都大的数值。 符号为+∞,同理负无穷的符号式-∞。
3、无穷大的数学运算
在叙述一个区间时,只有上限,则是(-∞,x](x∈R);只有下限,则是[x,+∞)(x∈R);既没有上限又没有下限,则是(-∞,+∞)。
在高等数学中,规定:x为实数,当x>0时,x÷0=+∞;当x<0时,x÷0=-∞;当x=0时,x÷0无意义。
+∞与实数加、减、乘、除、乘方、开方运算,结果永远是+∞;-∞与实数加、减、乘、除、乘方、开方运算,结果永远是-∞。(0×±∞无意义)
参考资料:百度百科 ∞ (无穷大符号)
∞:无穷大符号,符号∝:表示成正比例。
∝介绍:
符号“∝”表示成正比例。
一个物理量y随另一个物理量x的正比关系,可以表示为y∝x(读作“y正比于x”)。例如,在匀速直线运动的速度公式v=s/t中,s与t成正比,记作s∝t。
∞介绍:
将8水平置放成"∞"来表示"无穷大"符号是在英国人沃利斯(John Wallis,)的论文《算术的无穷大》(1655年出版)一书中首次使用的。
扩展资料:
∞的数学运算:
在叙述一个区间时,只有上限,则是(-∞,x](x∈R);只有下限,则是[x,+∞)(x∈R);既没有上限又没有下限,则是(-∞,+∞)。
在高等数学中,规定:x为实数,当x>0时,x÷0=+∞;当x<0时,x÷0=-∞;当x=0时,x÷0无意义。
+∞与实数加、减、乘、除、乘方、开方运算,结果永远是+∞;-∞与实数加、减、乘、除、乘方、开方运算,结果永远是-∞。(0×±∞无意义)
+∞在某种意义上可以表达为x+1,因为x是表达任意实数或虚数的符号,而无限一定大于任何任意实数或虚数,而0.999...999(0.9的无限循环)=1的悖论显示无限或许是无限大到能涉及更高一个层面(因为0.9的无限循环是小于一的小数却等于1)。
数学中的无穷:
对于无限有以下解释或定义
“无限不是指边界外就没有东西,而是指边界外永远有另一个边界存在。”
在数学方面,无穷与下述的主题或概念相关:数学的极限、阿列夫数、集合论中的类、戴德金-无限群、罗素悖论、超实数、射影几何、扩展的实数轴以及绝对无限。在一些主题或概念中,无穷被认为是一个超越边界而增加的概念,而不是一个数。
在大众文化方面,《玩具总动员》中巴斯光年的口头禅:“To infinity and beyond!”(到达无穷,超越无穷),这句话也可被看作研究大型基数的集合论者的呐喊。
集合论中的无穷:
在集合论中对无穷有不同的定义。德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。
这里比较不同的无穷的“大小”的时候唯一的办法就是通过是否可以建立“一一对应关系”来判断,而抛弃了欧几里得“整体大于部分”的看法。例如整数集和自然数集由于可以建立一一对应的关系,它们就具有相同的无穷基数。
例如, 可数集合,如自然数集,整数集乃至有理数集对应的基数被定义为阿列夫0。
比可数集合“大”的称之为不可数集合,如实数集,其基数与自然数的幂集相同。
由于一个无穷集合的幂集总是具有比它本身更高的基数,所以通过构造一系列的幂集,可以证明无穷的基数的个数是无穷的。
然而有趣的是,无穷基数的个数比任何基数都多,从而它是一个比任何无穷大都要大的“无穷大”,它不能对应于一个基数,否则会产生康托尔悖论的一种形式。换号数学数字反应现像多余感应验收破译驳运数字。
参考资料:百度百科---- ∝
参考资料:百度百科----∞
无穷包括正无穷和负无穷。正无穷大于0的所有数,没有最大界限;负无穷小于0的所有数,没有最小界限。
正无穷
在实数范围内,表示某一大于零的有理数或无理数数值无限大的一种方式,没有具体数字,但是正无穷表示比任何一个数字都大的数值。 符号为+∞。 数轴上可表示为向右箭头无限远的点。
负无穷
某一负数值表示无限小的一种方式,没有具体数字,但是负无穷表示比任何一个数字都小的数值。 符号为-∞。
(搜狗拼音输入法的“工具箱”里的“数学符号”内可查对)