怎么用三重积分求椭球体的体积
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
展开全部
用三重积分球椭球体的体积,第1个方法可以用轮换对称法,中心在原点的椭球体,关于xyz轴都对称。所以可以先求出在第一卦象的体积再乘以8。第一卦限的体积可以用极坐标系求,也就是用切片法。
第2个方法就是用球坐标系法来求椭球体的体积,这个方法比较麻烦,记好xyz与球坐标系的转换关系,写出积分的上下限,套入公式即可。
第2个方法就是用球坐标系法来求椭球体的体积,这个方法比较麻烦,记好xyz与球坐标系的转换关系,写出积分的上下限,套入公式即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2016-04-16
展开全部
体积V = ∫S(z)dz = ∫π*a*b*(1-z^2/c^2)dz = 4/3*π*a*b*c
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
体积V = ∫S(z)dz = ∫π*a*b*(1-z^2/c^2)dz = 4/3*π*a*b*c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询