一道初中几何题,求用三角函数的解法!
D为圆O上的一点,DE垂直于直径AB,E为垂足,过D,A作圆O的切线,相交于点C,BC和DE相交于点F。求证:DF=EF...
D为圆O上的一点,DE垂直于直径AB,E为垂足,过D,A作圆O的切线,相交于点C,BC和DE相交于点F。求证:DF = EF
展开
2个回答
展开全部
如我加入的图,设CB与圆O的交点为G,连结AG,GD,DB,AD
则显然有DB/AB=GD/AG(这是关于圆的两切线和割线的一个很常用的结论,如果你想要它的证明我可以再写给你)
又DB/AB=BE/DB(射影定理),
所以BE/DB=GD/AG……………(1)
由正弦定理知GD/AG=sinα‘/sinβ’,
因为sinα‘=sinα,sinβ’=sinβ
所以GD/AG=sinα/sinβ………………(2)
联(1)式和(2)式知BE/DB=sinα/sinβ,
即BEsinβ=DBsinα
由正弦定理可得BEsinβ=EFsin∠BFE,DBsinα=DFsin∠BFD
从而EFsin∠BFE=DFsin∠BFD,又∠BFE+∠BFD=180°⇒sin∠BFE=sin∠BFD
所以EF=DF
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询