如图,已知OA平分∠BAC,∠1=∠2求证(1)△ABC是等腰三角形 (2)若要使得△ABC是等边三角形。
展开全部
证明:作OE⊥AB于E,OF⊥AC于F,
∵AO平分∠BAC,
∴∠3=∠4,
∴OE=OF(角平分线上的点到角两边的距离相等).
∵∠1=∠2,
∴OB=OC.
∴Rt△OBE≌Rt△OCF(HL).
∴∠5=∠6.
∴∠1+∠5=∠2+∠6.
即∠ABC=∠ACB.
∴AB=AC.
∴△ABC是等腰三角形.
∵AO平分∠BAC,
∴∠3=∠4,
∴OE=OF(角平分线上的点到角两边的距离相等).
∵∠1=∠2,
∴OB=OC.
∴Rt△OBE≌Rt△OCF(HL).
∴∠5=∠6.
∴∠1+∠5=∠2+∠6.
即∠ABC=∠ACB.
∴AB=AC.
∴△ABC是等腰三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明出∠3=∠4是不是多余的,只要证明一个全等 而且条件中不要这个啊,怎么都有这个呢?抄袭严重啊、还是我理解错了啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵OA平分∠BAC
∴∠BAO=∠CAO
∵∠1=∠2
∴OB=OC
∵AO=AO
∴△ABO≌△ACO
∴AB=AC
∴△ABC是等腰三角形
∴∠BAO=∠CAO
∵∠1=∠2
∴OB=OC
∵AO=AO
∴△ABO≌△ACO
∴AB=AC
∴△ABC是等腰三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询