高等数学,2 3求和函数
1个回答
展开全部
3. 因 S(0)= 0
则 S(x) = ∑<n=0,∞> x^(2n+1)/(2n+1) = ∑<n=0,∞> ∫<0, x> t^(2n) dt + S(0)
= ∫<0, x> ∑<n=0,∞> t^(2n) dt = ∫<0, x> dt/(1-t^2) = (1/2)ln[(1+x)/(1-x)]
(-1 < x < 1)
∑<n=0,∞> 1/[(2n+1)2^n] = ∑<n=0,∞> (1/√2)^(2n) / (2n+1)
= √2 ∑<n=0,∞> (1/√2)^(2n+1) / (2n+1)
= (√2/2)ln[(1+1/√2)/(1-1/√2)] = (√2/2)ln[(√2+1)/(/√2-1)]
= (√2/2)ln[(√2+1)^2] = √2 ln(√2+1)
上题更简单,自行仿做即可。
则 S(x) = ∑<n=0,∞> x^(2n+1)/(2n+1) = ∑<n=0,∞> ∫<0, x> t^(2n) dt + S(0)
= ∫<0, x> ∑<n=0,∞> t^(2n) dt = ∫<0, x> dt/(1-t^2) = (1/2)ln[(1+x)/(1-x)]
(-1 < x < 1)
∑<n=0,∞> 1/[(2n+1)2^n] = ∑<n=0,∞> (1/√2)^(2n) / (2n+1)
= √2 ∑<n=0,∞> (1/√2)^(2n+1) / (2n+1)
= (√2/2)ln[(1+1/√2)/(1-1/√2)] = (√2/2)ln[(√2+1)/(/√2-1)]
= (√2/2)ln[(√2+1)^2] = √2 ln(√2+1)
上题更简单,自行仿做即可。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询