数学 排列与组合

 我来答
僪高杰eY
2016-06-09 · TA获得超过131个赞
知道小有建树答主
回答量:166
采纳率:50%
帮助的人:38万
展开全部
当n=1时 等式显然成立
当n=2时 等式显然成立
当n>2时
An=C³(n+2)-C³(n+1)=[(n+2)*(n+1)*n-(n+1)*n*(n-1)]/6=(n+1)*n/2=C²(n+1)
则An的前n项和为Sn=C³(n+2)-C³(n+1)+C³(n+1)-C³(n)+····+C³(2+2)-C³(2+1)=C³(n+2)-C³(3)=C³(n+2)-1 即Sn+1=C³(n+2)
而∑(n+1) (k=2) C²k=C²2+∑(n+1) (k=3) C²k [累加不会表示,就用这模式:∑(n+1) (k=2) C²k]
=1+Sn=C³(n+2)
即C³(n+2)=∑(n+1) (k=2) C²k
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式