急求一道线性变换的题目
1个回答
展开全部
解: 齐次线性方程组(I)的系数矩阵=
1 1 -1 0
0 1 1 -1
r2*(-1)
1 1 -1 0
0 -1 -1 1
方程组(I)的基础解系为 α1=(-1,1,0,1)^T, α2=(1,0,1,1)^T.
方程组(I),(II)的公共解β既可由α1,α2线性表示, 又可由ξ1,ξ2线性表示.
设 β=k1α1+k2α2=t1ξ1+t2ξ2
则 k1,k2,t1,t2 满足
k1α1+k2α2-t1ξ1-t2ξ2=0
所以, 求出满足上式齐次线性方程组的解即可.
(α1,α2,-ξ1,-ξ2)=
-1 1 1 -1
1 0 -1 0
0 1 -2 -1
1 1 -4 -1
-->
1 0 0 0
0 1 0 -1
0 0 1 0
0 0 0 0
所以 (k1,k2,t1,t2)^T=c(0,1,0,1)^T
所以方程组(I),(II)的公共解为:
β = cα2= cξ2 = c(1,0,1,1)^T.
1 1 -1 0
0 1 1 -1
r2*(-1)
1 1 -1 0
0 -1 -1 1
方程组(I)的基础解系为 α1=(-1,1,0,1)^T, α2=(1,0,1,1)^T.
方程组(I),(II)的公共解β既可由α1,α2线性表示, 又可由ξ1,ξ2线性表示.
设 β=k1α1+k2α2=t1ξ1+t2ξ2
则 k1,k2,t1,t2 满足
k1α1+k2α2-t1ξ1-t2ξ2=0
所以, 求出满足上式齐次线性方程组的解即可.
(α1,α2,-ξ1,-ξ2)=
-1 1 1 -1
1 0 -1 0
0 1 -2 -1
1 1 -4 -1
-->
1 0 0 0
0 1 0 -1
0 0 1 0
0 0 0 0
所以 (k1,k2,t1,t2)^T=c(0,1,0,1)^T
所以方程组(I),(II)的公共解为:
β = cα2= cξ2 = c(1,0,1,1)^T.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询