等离子弧焊机 与其他焊接方法比有什么优缺点
5个回答
展开全部
优点:
a.能量密度大、电弧方向性强、熔透能力强,在不开坡口、不加填充焊丝的情况下可
一次焊透8~10mm 厚的不锈钢板。与钨极氩弧焊相比,在相同的焊缝熔深情况下,等离子
弧焊接速度要快得多。
b.焊缝质量对弧长的变化不敏感,这是由于等离子弧的形态接近圆柱形,发散角很小,
约5°,且挺直度好,弧长变化时对加热斑点的面积影响很小,易获得均匀的焊缝形状。工
件上受热区域小,热影响区窄,因而薄板焊接时变形小。
c.钨极缩在水冷铜喷嘴内部,不可能与工件接触,因此可避免焊缝金属产生夹钨现象。
电弧搅动性好,熔池温度高,有利于熔池内气体的释放。
d.等离子电弧由于压缩效应及热电离度较高,电流较小时仍很稳定。配用新型的电子
电源,焊接电流可以小到0.1A,这样小的电流也能达到电弧稳定燃烧,特别适合于焊接微
型精密零件。
e.可产生稳定的小孔效应,通过小孔效应,正面施焊时可获得良好的单面焊双面成形。
缺点:
a.可焊厚度有限,一般在25mm 以下;
b.焊枪及控制线路较复杂,喷嘴的使用寿命很低;
c.焊接参数较多,对焊接操作人员的技术水平要求较高。
等离子弧焊由于下述原因,其应用可能受到限制。
a.电弧作用区域的观察性差。等离子弧枪结构复杂,不仅比较重,手工焊时操作人员还较难观察焊接区域。
b.双弧弊端。使用转移弧时,当工艺参数选择不当,或喷嘴结构设计不合理,或喷嘴
多次使用后有损伤,就会在钨极-喷嘴-工件之间产生串接电弧,这种旁弧与转移弧同时存
在,称为双弧。双弧产生,说明弧柱与喷嘴之间的冷气膜遭到了破坏,转移弧电流减小,这
样就导致焊接过程不正常,甚至很快就烧坏喷嘴。
c.电弧可达性差。由于枪体比较大,钨极内缩在喷嘴里面,因此对某些接头形式是无
能为力的。
d.一次投资大。等离子弧焊接与切割设备比较昂贵。但是其焊接或切割速度快,焊缝
与切割质量好,若将这些因素考虑进去,其使用成本还不是太高。
a.能量密度大、电弧方向性强、熔透能力强,在不开坡口、不加填充焊丝的情况下可
一次焊透8~10mm 厚的不锈钢板。与钨极氩弧焊相比,在相同的焊缝熔深情况下,等离子
弧焊接速度要快得多。
b.焊缝质量对弧长的变化不敏感,这是由于等离子弧的形态接近圆柱形,发散角很小,
约5°,且挺直度好,弧长变化时对加热斑点的面积影响很小,易获得均匀的焊缝形状。工
件上受热区域小,热影响区窄,因而薄板焊接时变形小。
c.钨极缩在水冷铜喷嘴内部,不可能与工件接触,因此可避免焊缝金属产生夹钨现象。
电弧搅动性好,熔池温度高,有利于熔池内气体的释放。
d.等离子电弧由于压缩效应及热电离度较高,电流较小时仍很稳定。配用新型的电子
电源,焊接电流可以小到0.1A,这样小的电流也能达到电弧稳定燃烧,特别适合于焊接微
型精密零件。
e.可产生稳定的小孔效应,通过小孔效应,正面施焊时可获得良好的单面焊双面成形。
缺点:
a.可焊厚度有限,一般在25mm 以下;
b.焊枪及控制线路较复杂,喷嘴的使用寿命很低;
c.焊接参数较多,对焊接操作人员的技术水平要求较高。
等离子弧焊由于下述原因,其应用可能受到限制。
a.电弧作用区域的观察性差。等离子弧枪结构复杂,不仅比较重,手工焊时操作人员还较难观察焊接区域。
b.双弧弊端。使用转移弧时,当工艺参数选择不当,或喷嘴结构设计不合理,或喷嘴
多次使用后有损伤,就会在钨极-喷嘴-工件之间产生串接电弧,这种旁弧与转移弧同时存
在,称为双弧。双弧产生,说明弧柱与喷嘴之间的冷气膜遭到了破坏,转移弧电流减小,这
样就导致焊接过程不正常,甚至很快就烧坏喷嘴。
c.电弧可达性差。由于枪体比较大,钨极内缩在喷嘴里面,因此对某些接头形式是无
能为力的。
d.一次投资大。等离子弧焊接与切割设备比较昂贵。但是其焊接或切割速度快,焊缝
与切割质量好,若将这些因素考虑进去,其使用成本还不是太高。
展开全部
优点:能量密度大、电弧方向性强、熔透能力强,在不开坡口、不加填充焊丝的情况下可
一次焊透8~10mm 厚的不锈钢板。
缺点:焊接参数较多,对焊接操作人员的技术水平要求较高。
等离子弧焊机的特点:
1、电弧能量高,焊接热影响区小,焊接形变很小;
2、 弧柱刚性大,由于小孔效应,实现了单面焊双面成型;
3、焊缝缺陷少,可焊材料多,焊接质量高;
4、 卓越的重复生产性,电极缩在喷嘴内,不易污染和烧损。相关点:
1、等离子弧是离子气被电离产生高温离子气流,从喷嘴细孔中喷出,经压缩形成细长的弧柱,其温度可达,高于常规的自由电弧。
2、中文名称:等离子焊机英文名称:Plasma welding machine
3、定义:按照预先编制的数字指令程序移动割炬进行自动热切割的设备。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
出了变形小,强度损失小以外没优点了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
等离子弧焊接,和其它焊接方法相比,具有
追答
等离子弧也叫压缩电弧,用于焊接具有焊接温度高,热量集中,能量密度大,电弧稳定性高,焊缝成形好,适用于超薄焊件及厚大件的焊接。缺点是设备复杂,对操作者要求高等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
氩弧焊技术是在普通电弧焊的原理的基础上,利用氩气对金属焊材的保护,通过高电流使焊材在被焊基材上融化成液态形成溶池,使被焊金属和焊材达到冶金结合的一种焊接技术,由于在高温熔融焊接中不断送上氩气,使焊材不能和空气中的氧气接触,从而防止了焊材的氧化,因此可以焊接铜、铝、合金钢等有色金属。
等离子焊接时,等离子射流穿过整个焊缝并形成一个小孔(即小孔效应)气体也随之穿过。当然,这个小孔随电弧的前移而闭合。等离子焊可焊接比TIG焊更厚的钢板在操作技术和经济效益两方面都有不容置疑的优点。
根部焊道 手工电弧焊接 手式TIG焊接 等离子焊接(PAW)
板材焊前准备 坡口+钝边 坡口+钝边 2.5-8mm
无需坡口+钝边
装配 相对困难(间隙) 困难(小间隙) 容易
焊工技术要求 熟练 熟练 一般
焊接速度 非常慢 非常慢 相当快
操作难度 困难 非常困难 较容易
焊后质量 好/但外观不美 好 极好
特别问题 焊条过热, 焊工易疲劳 无
质量难以控制, 质量难以控制,
工件变形 工件变形
由于其焊接速度快,焊缝美观,焊缝质量好,成本低,等离子焊接已广泛运用于设备制造业中对各种型式的接头进行焊接、医疗设备、真空装置、薄板加工、波纹管、仪表、传感器、汽车部件、化工密封件等。
微束等离子焊更是在实际运用中显露出巨大的优势,其焊缝质量可与激光焊比肩。微束等离子技术已成功的应用于大多数金属的焊接,如钢、不锈钢、各种合金钢、铜、镍、钛、钼、钨、金、铂、铑、钯等各种金属及其合金材料。典型应用产品有传感器膜盒,焊接波纹管,微电机定子铁心,电子产品,不锈钢锅
-----------------------------------------------------
★过程特点
等离子焊接与TIG焊十分相似,它们的电弧都是在尖头的钨电极和工件之间形成的。但是,通过在焊炬中安置电极,能将等离子弧从保护气体的气囊中分离出来,随后推动等离子通过孔型良好的铜喷管将弧压缩。通过改变孔的直径和等离子气流速度,可以实现三种操作方式:
1、微束等离子:0.1~15A
在很低的焊接电流下,也能使用微束等离子弧。即使在弧长变化不超过20mm时,柱状弧仍能保持稳定。
2、中等电流:15~200A
在较大的15~200A电流下,等离子弧的过程特点与TIG弧相似,但由于等离子被压缩过,弧更加挺直。虽然可提高等离子气流速度来增加焊接熔池的度深,但会造成在紊乱的保护气流中,混入空气和保护气体的风险。
3、小孔型等离子:大于100A
通过增加焊接电流和等离子气流速度,可产生强有力的等离子束,与激光或电子束焊接一样,它能够在材料上形成充分的熔深。焊接时,随着焊接熔池的流动,金属穿过小孔被切割后在表面张力作用下形成焊道。单道焊时,该过程可用于焊接较厚的材料(厚度不超过10mm的不锈钢)。
★电源
使用等离子弧时,通常采用直流电流和垂降特性电源。由于从特别的焊炬排列方式和各自分离的等离子、保护气流中获得了独特的操作特性,可在等离子控制台上增加一个普通的TIG电源,还可以使用特别组建的等离子系统。采用正弦波交流电时,不容易使等离子弧稳定。当电极和工件间距较长且等离子被压缩时,等离子弧很难发挥作用,而且,在正半周期内,过热的电极会使导电嘴变成球形,从而干扰弧的稳定。
可使用专用的直流开关电源。通过调节波形的平衡来减少电极正极的持续时间,使电极得到充分冷却,以维护尖头导电嘴形状,并形成稳定的弧。
★起弧
虽然等离子弧是通过采用高频产生的,但它首先是在电极和等离子喷嘴之间形成的。该维弧被装在焊炬中,需要焊接时,再将它转移到工件上。与在焊缝间保持的维弧相同,维弧系统能确保稳定的起弧,这避免了对产生电子干涉的高频的需要。
★电极
用于等离子过程使用的是含2% 氧化钍的钨电极和铜的等离子喷嘴。与TIG焊使用的导电嘴不同,在等离子过程中,对电极导电嘴的直径要求不那么严格,但压缩角须保持在30°~60°左右。等离子喷嘴孔的直径是很重要的,在相同的电流强度和等离子气流速度下,孔直径太小会导致喷嘴被过度腐蚀甚至熔化。在工作电流下,需要谨慎使用直径过大的等离子喷嘴。
注: 孔的直径过大,可能会对弧的稳定及孔的维护造成困难。
★等离子和保护气体
通常等离子气体的组合气体是氩气,并含有2%~5%的氩气作为保护气体。氦气也能用做等离子气体,但由于它温度较高,会降低喷嘴的电流上升率。氢气含量越少,进行小孔型等离子焊接就越困难。
★应用
☆微束离子焊接
微束离子通常用于焊接薄板材(厚度为0.1mm)、焊丝和网孔部分。针型挺直的弧能将弧的偏离和变形减到最小。虽然等效的TIG 弧更扩散,但更新的晶体管化的(TIG)电源能在低电流下产生非常稳定的弧。
☆中等电流焊接
在熔化方式下可选择该方法进行传统的TIG焊。 它的优点是能产生较深的熔深(愿于较高的等离子气流),能容许包括药皮(焊炬中的焊条)在内的较大的表面污染。主要缺点是焊炬笨重,使手工焊接比较困难。在机械化焊接中,应该更加注意焊炬的维护以保证稳定的性能。
☆小孔型焊接
可用的几点优势是:熔深较深、焊接速度快。与TIG 弧相比,它能焊透厚度达10mm的板材,但使用单道焊接技术时,通常将板材厚度限制在6mm内。通常的方法是使用有填充物的小孔,以确保焊道断面的光滑(无齿边)。由于厚度达到了15mm,要使用6mm厚的钝边进行V型接头准备。也可使用双道焊技术,在熔化方式下通过添加填充焊丝,自动生成第一和第二条焊道。
必须精确地平衡焊接参数、等离子气流速度和填充焊丝的添加量(填入小孔)以维护孔和焊接熔池的稳定,这一技术只适用于机械化焊接。虽然通过使用脉冲电流,该技术能用于位置焊接,但它通常是用于对较厚的板材材料(超过3mm)进行高速平焊。进行管道焊接时,必须精确地控制溢出电流和等离子气流速度以确保小孔关闭。
等离子焊接时,等离子射流穿过整个焊缝并形成一个小孔(即小孔效应)气体也随之穿过。当然,这个小孔随电弧的前移而闭合。等离子焊可焊接比TIG焊更厚的钢板在操作技术和经济效益两方面都有不容置疑的优点。
根部焊道 手工电弧焊接 手式TIG焊接 等离子焊接(PAW)
板材焊前准备 坡口+钝边 坡口+钝边 2.5-8mm
无需坡口+钝边
装配 相对困难(间隙) 困难(小间隙) 容易
焊工技术要求 熟练 熟练 一般
焊接速度 非常慢 非常慢 相当快
操作难度 困难 非常困难 较容易
焊后质量 好/但外观不美 好 极好
特别问题 焊条过热, 焊工易疲劳 无
质量难以控制, 质量难以控制,
工件变形 工件变形
由于其焊接速度快,焊缝美观,焊缝质量好,成本低,等离子焊接已广泛运用于设备制造业中对各种型式的接头进行焊接、医疗设备、真空装置、薄板加工、波纹管、仪表、传感器、汽车部件、化工密封件等。
微束等离子焊更是在实际运用中显露出巨大的优势,其焊缝质量可与激光焊比肩。微束等离子技术已成功的应用于大多数金属的焊接,如钢、不锈钢、各种合金钢、铜、镍、钛、钼、钨、金、铂、铑、钯等各种金属及其合金材料。典型应用产品有传感器膜盒,焊接波纹管,微电机定子铁心,电子产品,不锈钢锅
-----------------------------------------------------
★过程特点
等离子焊接与TIG焊十分相似,它们的电弧都是在尖头的钨电极和工件之间形成的。但是,通过在焊炬中安置电极,能将等离子弧从保护气体的气囊中分离出来,随后推动等离子通过孔型良好的铜喷管将弧压缩。通过改变孔的直径和等离子气流速度,可以实现三种操作方式:
1、微束等离子:0.1~15A
在很低的焊接电流下,也能使用微束等离子弧。即使在弧长变化不超过20mm时,柱状弧仍能保持稳定。
2、中等电流:15~200A
在较大的15~200A电流下,等离子弧的过程特点与TIG弧相似,但由于等离子被压缩过,弧更加挺直。虽然可提高等离子气流速度来增加焊接熔池的度深,但会造成在紊乱的保护气流中,混入空气和保护气体的风险。
3、小孔型等离子:大于100A
通过增加焊接电流和等离子气流速度,可产生强有力的等离子束,与激光或电子束焊接一样,它能够在材料上形成充分的熔深。焊接时,随着焊接熔池的流动,金属穿过小孔被切割后在表面张力作用下形成焊道。单道焊时,该过程可用于焊接较厚的材料(厚度不超过10mm的不锈钢)。
★电源
使用等离子弧时,通常采用直流电流和垂降特性电源。由于从特别的焊炬排列方式和各自分离的等离子、保护气流中获得了独特的操作特性,可在等离子控制台上增加一个普通的TIG电源,还可以使用特别组建的等离子系统。采用正弦波交流电时,不容易使等离子弧稳定。当电极和工件间距较长且等离子被压缩时,等离子弧很难发挥作用,而且,在正半周期内,过热的电极会使导电嘴变成球形,从而干扰弧的稳定。
可使用专用的直流开关电源。通过调节波形的平衡来减少电极正极的持续时间,使电极得到充分冷却,以维护尖头导电嘴形状,并形成稳定的弧。
★起弧
虽然等离子弧是通过采用高频产生的,但它首先是在电极和等离子喷嘴之间形成的。该维弧被装在焊炬中,需要焊接时,再将它转移到工件上。与在焊缝间保持的维弧相同,维弧系统能确保稳定的起弧,这避免了对产生电子干涉的高频的需要。
★电极
用于等离子过程使用的是含2% 氧化钍的钨电极和铜的等离子喷嘴。与TIG焊使用的导电嘴不同,在等离子过程中,对电极导电嘴的直径要求不那么严格,但压缩角须保持在30°~60°左右。等离子喷嘴孔的直径是很重要的,在相同的电流强度和等离子气流速度下,孔直径太小会导致喷嘴被过度腐蚀甚至熔化。在工作电流下,需要谨慎使用直径过大的等离子喷嘴。
注: 孔的直径过大,可能会对弧的稳定及孔的维护造成困难。
★等离子和保护气体
通常等离子气体的组合气体是氩气,并含有2%~5%的氩气作为保护气体。氦气也能用做等离子气体,但由于它温度较高,会降低喷嘴的电流上升率。氢气含量越少,进行小孔型等离子焊接就越困难。
★应用
☆微束离子焊接
微束离子通常用于焊接薄板材(厚度为0.1mm)、焊丝和网孔部分。针型挺直的弧能将弧的偏离和变形减到最小。虽然等效的TIG 弧更扩散,但更新的晶体管化的(TIG)电源能在低电流下产生非常稳定的弧。
☆中等电流焊接
在熔化方式下可选择该方法进行传统的TIG焊。 它的优点是能产生较深的熔深(愿于较高的等离子气流),能容许包括药皮(焊炬中的焊条)在内的较大的表面污染。主要缺点是焊炬笨重,使手工焊接比较困难。在机械化焊接中,应该更加注意焊炬的维护以保证稳定的性能。
☆小孔型焊接
可用的几点优势是:熔深较深、焊接速度快。与TIG 弧相比,它能焊透厚度达10mm的板材,但使用单道焊接技术时,通常将板材厚度限制在6mm内。通常的方法是使用有填充物的小孔,以确保焊道断面的光滑(无齿边)。由于厚度达到了15mm,要使用6mm厚的钝边进行V型接头准备。也可使用双道焊技术,在熔化方式下通过添加填充焊丝,自动生成第一和第二条焊道。
必须精确地平衡焊接参数、等离子气流速度和填充焊丝的添加量(填入小孔)以维护孔和焊接熔池的稳定,这一技术只适用于机械化焊接。虽然通过使用脉冲电流,该技术能用于位置焊接,但它通常是用于对较厚的板材材料(超过3mm)进行高速平焊。进行管道焊接时,必须精确地控制溢出电流和等离子气流速度以确保小孔关闭。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询