1个回答
展开全部
证明:
因为∠BAC的平分线AD所以∠BAD=∠DAC
又因为AE=AF,AO=AO
所以△AEO≌△AFO
所以OF=OE ∠AOE=∠AOF
因为∠BAC、∠BCA的平分线AD、CE,∠B=60°
所以∠AOC=120° 所以,∠AOE=∠COD=60° ∠AOE=∠AOF=60°
所以∠FOC=∠AOC-∠AOF=60°
即∠COD=∠FOC=60°
又因为 ∠BCA的平分线CE所以∠DCO=∠FCO,CO=OC
所以△DCO≌△FCO
所以OF=OD
所以OF=OD =0E
因为∠BAC的平分线AD所以∠BAD=∠DAC
又因为AE=AF,AO=AO
所以△AEO≌△AFO
所以OF=OE ∠AOE=∠AOF
因为∠BAC、∠BCA的平分线AD、CE,∠B=60°
所以∠AOC=120° 所以,∠AOE=∠COD=60° ∠AOE=∠AOF=60°
所以∠FOC=∠AOC-∠AOF=60°
即∠COD=∠FOC=60°
又因为 ∠BCA的平分线CE所以∠DCO=∠FCO,CO=OC
所以△DCO≌△FCO
所以OF=OD
所以OF=OD =0E
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询