1^∞型未定式极限。
展开全部
令y=[1+(a/x)]^x
两边同时取自然对数,得:
㏑y=㏑{[1+(a/x)]^x}
即㏑y=x㏑[1+(a/x)]
lim(x→∞)x㏑[1+(a/x)]
=lim(x→∞){㏑[1+(a/x)]}/(1/x)
根据洛必达法则:
lim(x→∞){㏑[1+(a/x)]}/(1/x)
=lim(x→∞){(-a/x²)[x/(x+a)]}/(-1/x²)
=lim(x→∞)ax²/[x(x+1)]
=lim(x→∞)2ax/2x+a
=2a/2
=a
∴lim(x→∞)[1+(a/x)]^x=e^a
至于lim(x→∞)[1+(1/x)]^x=e的证明,把a换成1就行了
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个极限题我做不出来,我不会做几件题,但是我放到网上查出来结果了。告诉你,你也去查吧,网就是你的好老师。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |