若抛物线的焦点为(2,2),准线方程为x+y-1=0,求此抛物线方程
3个回答
展开全部
设抛物线上点为(x,y)
由抛物线的性质,知
点到焦点和准线的距离相等,所以
|x+y-1|/√2=√(x-2)²+(y-2)²
(x+y-1)²=2[(x-2)²+(y-2)²]
x²+y²+2xy-2x-2y+1=2x²-8x+8+2y²-8y+8
即
x²+y²-6x-6y-2xy+15=0
由抛物线的性质,知
点到焦点和准线的距离相等,所以
|x+y-1|/√2=√(x-2)²+(y-2)²
(x+y-1)²=2[(x-2)²+(y-2)²]
x²+y²+2xy-2x-2y+1=2x²-8x+8+2y²-8y+8
即
x²+y²-6x-6y-2xy+15=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设抛物线上任意一点为P(x,y),
则由抛物线的定义知√[(x-2)^2+(y-2)^2]=|x+y-1|/√2
(x-2)^2+(y-2)^2=(x+y-1)^2/2
化简得x^2+y^2-2xy-6x-6y+15=0即为所求
则由抛物线的定义知√[(x-2)^2+(y-2)^2]=|x+y-1|/√2
(x-2)^2+(y-2)^2=(x+y-1)^2/2
化简得x^2+y^2-2xy-6x-6y+15=0即为所求
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询