已知抛物线y=1/2x^2-2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛
与抛物线对称轴交于点0’,过点B和P的直线L交Y轴于点C,连接O'C,将三角形ACO'沿O'C翻折后,点A落在点D的位置(1)求直线L的函数解析式(2)求点D的坐标我只要...
与抛物线对称轴交于点0’,过点B和P的直线L交Y轴于点C,连接O'C,将三角形ACO'沿O'C翻折后,点A落在点D的位置
(1)求直线L的函数解析式
(2)求点D的坐标
我只要第2题答案!! 展开
(1)求直线L的函数解析式
(2)求点D的坐标
我只要第2题答案!! 展开
2个回答
展开全部
连接AD交O′C于点E,
∵点D由点A沿O′C翻折后得到,
∴O′C垂直平分AD.
C(0,-3),
∴在Rt△AO′C中,O′A=2,AC=4,
∴O′C=2√ 5.
1/2×O′C×AE= 1/2×O′A×CA,
∴AE= 4√5/5,AD=2AE= 8√5/5.
作DF⊥AB于F,
∴ AF/AC=DF/O′A=AD/O′C,
∴AF= AD/O′C•AC= 16/5,DF= AD/O′C•O′A= 8/5,
又∵OA=1,
∴Yd=1- 8/5=- 3/5,
∴( 16/5,- 3/5).
∵点D由点A沿O′C翻折后得到,
∴O′C垂直平分AD.
C(0,-3),
∴在Rt△AO′C中,O′A=2,AC=4,
∴O′C=2√ 5.
1/2×O′C×AE= 1/2×O′A×CA,
∴AE= 4√5/5,AD=2AE= 8√5/5.
作DF⊥AB于F,
∴ AF/AC=DF/O′A=AD/O′C,
∴AF= AD/O′C•AC= 16/5,DF= AD/O′C•O′A= 8/5,
又∵OA=1,
∴Yd=1- 8/5=- 3/5,
∴( 16/5,- 3/5).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询