2个回答
展开全部
一、1x1!+2x2!+3x3!+4x4!+.....+nxn!=(n+1)!-1
证明:
左边=(2-1)x1!+2x2!+3x3!+4x4!+.....+nxn!
=2!-1+2x2!+3x3!+4x4!+.....+nxn!
=(1+2)x2!-1+3x3!+4x4!+.....+nxn!
=3!-1+3x3!+4x4!+.....+nxn!
=(1+3)x3!-1+4x4!+.....+nxn!
=4!-1+5x5!+.....+nxn!
..........
=(n+1)!-1
所以:S=1×1!+2×2!+3×3!+……+n×n!=(n+1)!-1
证明:
左边=(2-1)x1!+2x2!+3x3!+4x4!+.....+nxn!
=2!-1+2x2!+3x3!+4x4!+.....+nxn!
=(1+2)x2!-1+3x3!+4x4!+.....+nxn!
=3!-1+3x3!+4x4!+.....+nxn!
=(1+3)x3!-1+4x4!+.....+nxn!
=4!-1+5x5!+.....+nxn!
..........
=(n+1)!-1
所以:S=1×1!+2×2!+3×3!+……+n×n!=(n+1)!-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询