求定积分谢谢
1个回答
展开全部
∫[π/4:π/3](x/sin²x)dx
=∫[π/4:π/3](x·csc²x)dx
=-∫[π/4:π/3]xd(cotx)
=-x·cotx|[π/4:π/3]+∫[π/4:π/3]cotxdx
=-[(π/3)·cot(π/3)-(π/4)·cot(π/4)] +∫[π/4:π/3](cosx/sinx)dx
=-[(π/3)·(√3/3)-(π/4)·1] +∫[π/4:π/3](1/sinx)d(sinx)
=π/4 - √3π/9 +ln|sinx||[π/4:π/3]
=π/4 - √3π/9+ln(π/3)-ln(π/4)
=π/4 - √3π/9+ln4-ln3
=∫[π/4:π/3](x·csc²x)dx
=-∫[π/4:π/3]xd(cotx)
=-x·cotx|[π/4:π/3]+∫[π/4:π/3]cotxdx
=-[(π/3)·cot(π/3)-(π/4)·cot(π/4)] +∫[π/4:π/3](cosx/sinx)dx
=-[(π/3)·(√3/3)-(π/4)·1] +∫[π/4:π/3](1/sinx)d(sinx)
=π/4 - √3π/9 +ln|sinx||[π/4:π/3]
=π/4 - √3π/9+ln(π/3)-ln(π/4)
=π/4 - √3π/9+ln4-ln3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询