已知弦长弧高求半径
R^2=(R-H)^2+(L/2)^2
R^2=R^2-2*R*H+H^2+L^2/4
2*R*H=H^2+L^2/4
R=H/2+L^2/(8*H)
若直线l:y=kx+b,与圆锥曲线相交与A、B两点,A(x1,y1)B(x2,y2)
弦长|AB|=√[(x1-x2)^2+(y1-y2)^2]=√[(x1-x2)^2+(kx1-kx2)^2]=√(1+k^2)|x1-x2|=√(1+k^2)√[(x1+x2)^2-4x1x2]
扩展资料:
切割线定理的证明:
圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB
设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB
证明:连接AT, BT
∵∠PTB=∠PAT(弦切角定理)
∠APT=∠TPB(公共角)
∴△PBT∽△PTA(两角对应相等,两三角形相似)
则PB:PT=PT:AP
即:PT²=PB·PA
割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
一条直线与一条弧线有两个公共点,我们就说这条直线是这条曲线的割线。
与割线有关的定理有:割线定理、切割线定理。常运用于有关于圆的题中。
与切割线定理相似:两条割线交于p点,割线m交圆于A1 B1两点,割线n交圆于A2 B2两点,则pA1·pB1=pA2·pB2。
如图直线ABP和CDP是自点P引的⊙O的两条割线,求证:PA·PB=PC·PD
参考资料:百度百科——圆
2021-11-22 广告
R=H/2+L^2/(8*H)