sqoop支持从mysql导出到oracle吗
1个回答
展开全部
hive中创建dept表
create table dept(
deptno int,
dname string,
loc string
)
row format delimited fields terminated by ‘\t‘ lines terminated by ‘\n‘
stored as textfile;
导入数据:
sqoop import --connect jdbc:oracle:thin:@192.168.1.107:1521:ORCL \
--username SCOTT --password tiger \
--table DEPT \
--hive-overwrite --hive-import --hive-table dept \
--fields-terminated-by ‘\t‘ --lines-terminated-by ‘\n‘ \
-m 3;
HIVE导出到ORACLE
需要分两步:
第一步:先写入到hdfs
insert overwrite directory ‘/user/hadoop/DEPT_HIVE_EXPORT‘ select * from dept;
第二步:由hdfs导出到oracle
导出到数据库时,要确保表已经在数据库中存在,否则报错。
create table DEPT_DEMO as select * from DEPT where 1=2;
sqoop export --connect jdbc:oracle:thin:@192.168.1.107:1521:ORCL \
--username SCOTT --password tiger \
--table DEPT_DEMO \
--export-dir /user/hadoop/DEPT_HIVE_EXPORT \
--fields-terminated-by ‘\001‘ \
-m 2;
注:从hive导出到hdfs的分隔符不是,而是\001;如果不指定分隔符,则报错:Caused by: java.lang.NumberFormatException
一、Mysql与HDFS互导数据
环境:
宿主机器操作系统为Win7,Mysql安装在宿主机上,宿主机地址为192.168.66.96
3台虚拟机操作系统为Ubuntu-12.04.1-32位
三台虚拟机已成功安装Hadoop,并实现免密钥互访,配hosts为:
192.168.66.91 masternode
192.168.66.92 slavenode1
192.168.66.93 slavenode2
/etc/profile已配置好必备环境变量HADOOP_HOME,JAVA_HOME
实验在masternode上进行,已成功连接mysql
步骤一,下载安装包:
我安装的Hadoop版本是原生hadoop-0.20.203.0,SQOOP不支持此版本,可使用CDH3版本hadoop,也可以通过拷贝相应的包到sqoop-1.2.0-CDH3B4/lib下,依然可以使用。
下载相关文件:
http://archive.cloudera.com/cdh/3/hadoop-0.20.2-CDH3B4.tar.gz
http://archive.cloudera.com/cdh/3/sqoop-1.2.0-CDH3B4.tar.gz
sqoop-1.2.0-CDH3B4依赖hadoop-core-0.20.2-CDH3B4.jar,所以你需要下载hadoop- 0.20.2-CDH3B4.tar.gz,解压缩后将hadoop-0.20.2-CDH3B4/hadoop-core-0.20.2- CDH3B4.jar复制到sqoop-1.2.0-CDH3B4/lib中。
另外,sqoop导入mysql数据运行过程中依赖mysql-connector-java-*.jar,所以你需要下载mysql-connector-java-*.jar并复制到sqoop-1.2.0-CDH3B4/lib中。
步骤二,相关配置:
修改SQOOP的文件configure-sqoop,注释掉hbase和zookeeper检查(除非你准备使用HABASE等HADOOP上的组件) #if [ ! -d "${HBASE_HOME}" ]; then
# echo “Error: $HBASE_HOME does not exist!”
# echo ‘Please set $HBASE_HOME to the root of your HBase installation.’
# exit 1
#fi
#if [ ! -d "${ZOOKEEPER_HOME}" ]; then
# echo “Error: $ZOOKEEPER_HOME does not exist!”
# echo ‘Please set $ZOOKEEPER_HOME to the root of your ZooKeeper installation.’
# exit 1
#fi
修改/etc/profile环境变量文件(su root之后,sudo gedit /etc/profile):
添加 export SQOOP_HOME=/home/grid/sqoop
在原有PATH后添加 :$SQOOP_HOME/bin
步骤三,在mysql中建立测试用户,测试表和数据,并测试sqoop连接mysql:
创建用户sqoop并授权:
grant all privileges on *.* to 'sqoop'@'%' identified by 'sqoop' with grant option;
创建表空间(schema)sqoop,并创建测试表:
create table students (
id int not null primary key,
name varchar(20),
age int)
插入测试数据:
insert into students values('10001','liyang',29);
insert into students values('10002','lion',28);
insert into students values('10003','leon',26);
在masternode测试sqoop能否成功连接宿主机器上的mysql:
sqoop list-tables --connect jdbc:mysql://192.168.66.96:3306/sqoop --username sqoop --password sqoop
如果能正确显示出sqoop表空间中的students表,就说明sqoop已经可以成功连接mysql!
步骤四,将mysql中sqoop表空间的students表的三行数据导入HDFS:
启动hadoop:
start-all.sh
用jps验证启动是否成功
显示正在运行以下进程即为启动成功:
2820 SecondaryNameNode
4539 Jps
2887 JobTracker
2595 NameNode
从mysql导入数据,运行如下命令:
sqoop import --connect jdbc:mysql://192.168.66.96:3306/sqoop --username sqoop --password sqoop --table students -m 1
验证导入数据是否成功:
若导入成功,运行 hadoop dfs -ls 将能看到根目录/user/grid/下有以表名命名的文件夹students
运行 hadoop dfs -ls /user/grid/students 能看到该文件夹中包含文件:/user/grid/students/part-m-00000
运行 hadoop dfs -cat /user/grid/students/part-m-00000 就能看到该文件已经包含mysql中students表的三行数据:
10001,liyang,29
10002,lion,28
10003,leon,26
步骤五,将HDFS中的数据导入Mysql的students表中:
首先将mysql的students表数据清空:
delete from students;
然后在masternode上执行导出数据命令:
sqoop export --connect jdbc:mysql://192.168.66.96:3306/sqoop --username sqoop --password sqoop --table students --export-dir hdfs://masternode:9000/user/grid/students/part-m-00000
若成功,在mysql中会看到students表中的数据恢复了!
注意:过程中可能会因为slavenode的50010端口没打开而报错,需用root用户通过sudo ufw allow 50010命令打开端口!
二、Mysql与Hbase互导数据
将mysql的数据导入hbase的命令格式为:
sqoop import --connect jdbc:mysql://mysqlserver_IP/databaseName --username --password password --table datatable --hbase-create-table --hbase-table hbase_tablename --column-family col_fam_name --hbase-row-key key_col_name
其中 ,databaseName 和datatable 是mysql的数据库和表名,hbase_tablename是要导成hbase的表名,key_col_name可以指定datatable中哪一列作为hbase新表的rowkey,col_fam_name是除rowkey之外的所有列的列族名
例如:可通过如下命令将Mysql中的students表导入到Hbase中:
/home/grid/sqoop/bin/sqoop import --connect jdbc:mysql://192.168.66.96/sqoop --username sqoop --password liyang16 --table students --hbase-create-table --hbase-table students --column-family stuinfo --hbase-row-key id
成功执行后,可在hbase中用以下命令查看结果:
hbase(main):011:0> scan 'students'
ROW COLUMN+CELL
10001 column=stuinfo:age, timestamp=1356759994058, value=29
10001 column=stuinfo:name, timestamp=1356759994058, value=liyang
10002 column=stuinfo:age, timestamp=1356760044478, value=28
10002 column=stuinfo:name, timestamp=1356760044478, value=lion
10003 column=stuinfo:age, timestamp=1356760044478, value=26
10003 column=stuinfo:name, timestamp=1356760044478, value=leon
3 row(s) in 0.0900 seconds
三、Oracle与Hbase互导数据
将Oracle中的dept表(列为id,name,addr)导出至hbase中的dept表(行键为id,列族为deptinfo)
sqoop import --append --connect jdbc:oracle:thin:@192.168.66.90:1521:orcl --username test --password test --m 1 --table dept --columns id,name,addr --hbase-create-table --hbase-table dept --hbase-row-key id --column-family deptinfo
create table dept(
deptno int,
dname string,
loc string
)
row format delimited fields terminated by ‘\t‘ lines terminated by ‘\n‘
stored as textfile;
导入数据:
sqoop import --connect jdbc:oracle:thin:@192.168.1.107:1521:ORCL \
--username SCOTT --password tiger \
--table DEPT \
--hive-overwrite --hive-import --hive-table dept \
--fields-terminated-by ‘\t‘ --lines-terminated-by ‘\n‘ \
-m 3;
HIVE导出到ORACLE
需要分两步:
第一步:先写入到hdfs
insert overwrite directory ‘/user/hadoop/DEPT_HIVE_EXPORT‘ select * from dept;
第二步:由hdfs导出到oracle
导出到数据库时,要确保表已经在数据库中存在,否则报错。
create table DEPT_DEMO as select * from DEPT where 1=2;
sqoop export --connect jdbc:oracle:thin:@192.168.1.107:1521:ORCL \
--username SCOTT --password tiger \
--table DEPT_DEMO \
--export-dir /user/hadoop/DEPT_HIVE_EXPORT \
--fields-terminated-by ‘\001‘ \
-m 2;
注:从hive导出到hdfs的分隔符不是,而是\001;如果不指定分隔符,则报错:Caused by: java.lang.NumberFormatException
一、Mysql与HDFS互导数据
环境:
宿主机器操作系统为Win7,Mysql安装在宿主机上,宿主机地址为192.168.66.96
3台虚拟机操作系统为Ubuntu-12.04.1-32位
三台虚拟机已成功安装Hadoop,并实现免密钥互访,配hosts为:
192.168.66.91 masternode
192.168.66.92 slavenode1
192.168.66.93 slavenode2
/etc/profile已配置好必备环境变量HADOOP_HOME,JAVA_HOME
实验在masternode上进行,已成功连接mysql
步骤一,下载安装包:
我安装的Hadoop版本是原生hadoop-0.20.203.0,SQOOP不支持此版本,可使用CDH3版本hadoop,也可以通过拷贝相应的包到sqoop-1.2.0-CDH3B4/lib下,依然可以使用。
下载相关文件:
http://archive.cloudera.com/cdh/3/hadoop-0.20.2-CDH3B4.tar.gz
http://archive.cloudera.com/cdh/3/sqoop-1.2.0-CDH3B4.tar.gz
sqoop-1.2.0-CDH3B4依赖hadoop-core-0.20.2-CDH3B4.jar,所以你需要下载hadoop- 0.20.2-CDH3B4.tar.gz,解压缩后将hadoop-0.20.2-CDH3B4/hadoop-core-0.20.2- CDH3B4.jar复制到sqoop-1.2.0-CDH3B4/lib中。
另外,sqoop导入mysql数据运行过程中依赖mysql-connector-java-*.jar,所以你需要下载mysql-connector-java-*.jar并复制到sqoop-1.2.0-CDH3B4/lib中。
步骤二,相关配置:
修改SQOOP的文件configure-sqoop,注释掉hbase和zookeeper检查(除非你准备使用HABASE等HADOOP上的组件) #if [ ! -d "${HBASE_HOME}" ]; then
# echo “Error: $HBASE_HOME does not exist!”
# echo ‘Please set $HBASE_HOME to the root of your HBase installation.’
# exit 1
#fi
#if [ ! -d "${ZOOKEEPER_HOME}" ]; then
# echo “Error: $ZOOKEEPER_HOME does not exist!”
# echo ‘Please set $ZOOKEEPER_HOME to the root of your ZooKeeper installation.’
# exit 1
#fi
修改/etc/profile环境变量文件(su root之后,sudo gedit /etc/profile):
添加 export SQOOP_HOME=/home/grid/sqoop
在原有PATH后添加 :$SQOOP_HOME/bin
步骤三,在mysql中建立测试用户,测试表和数据,并测试sqoop连接mysql:
创建用户sqoop并授权:
grant all privileges on *.* to 'sqoop'@'%' identified by 'sqoop' with grant option;
创建表空间(schema)sqoop,并创建测试表:
create table students (
id int not null primary key,
name varchar(20),
age int)
插入测试数据:
insert into students values('10001','liyang',29);
insert into students values('10002','lion',28);
insert into students values('10003','leon',26);
在masternode测试sqoop能否成功连接宿主机器上的mysql:
sqoop list-tables --connect jdbc:mysql://192.168.66.96:3306/sqoop --username sqoop --password sqoop
如果能正确显示出sqoop表空间中的students表,就说明sqoop已经可以成功连接mysql!
步骤四,将mysql中sqoop表空间的students表的三行数据导入HDFS:
启动hadoop:
start-all.sh
用jps验证启动是否成功
显示正在运行以下进程即为启动成功:
2820 SecondaryNameNode
4539 Jps
2887 JobTracker
2595 NameNode
从mysql导入数据,运行如下命令:
sqoop import --connect jdbc:mysql://192.168.66.96:3306/sqoop --username sqoop --password sqoop --table students -m 1
验证导入数据是否成功:
若导入成功,运行 hadoop dfs -ls 将能看到根目录/user/grid/下有以表名命名的文件夹students
运行 hadoop dfs -ls /user/grid/students 能看到该文件夹中包含文件:/user/grid/students/part-m-00000
运行 hadoop dfs -cat /user/grid/students/part-m-00000 就能看到该文件已经包含mysql中students表的三行数据:
10001,liyang,29
10002,lion,28
10003,leon,26
步骤五,将HDFS中的数据导入Mysql的students表中:
首先将mysql的students表数据清空:
delete from students;
然后在masternode上执行导出数据命令:
sqoop export --connect jdbc:mysql://192.168.66.96:3306/sqoop --username sqoop --password sqoop --table students --export-dir hdfs://masternode:9000/user/grid/students/part-m-00000
若成功,在mysql中会看到students表中的数据恢复了!
注意:过程中可能会因为slavenode的50010端口没打开而报错,需用root用户通过sudo ufw allow 50010命令打开端口!
二、Mysql与Hbase互导数据
将mysql的数据导入hbase的命令格式为:
sqoop import --connect jdbc:mysql://mysqlserver_IP/databaseName --username --password password --table datatable --hbase-create-table --hbase-table hbase_tablename --column-family col_fam_name --hbase-row-key key_col_name
其中 ,databaseName 和datatable 是mysql的数据库和表名,hbase_tablename是要导成hbase的表名,key_col_name可以指定datatable中哪一列作为hbase新表的rowkey,col_fam_name是除rowkey之外的所有列的列族名
例如:可通过如下命令将Mysql中的students表导入到Hbase中:
/home/grid/sqoop/bin/sqoop import --connect jdbc:mysql://192.168.66.96/sqoop --username sqoop --password liyang16 --table students --hbase-create-table --hbase-table students --column-family stuinfo --hbase-row-key id
成功执行后,可在hbase中用以下命令查看结果:
hbase(main):011:0> scan 'students'
ROW COLUMN+CELL
10001 column=stuinfo:age, timestamp=1356759994058, value=29
10001 column=stuinfo:name, timestamp=1356759994058, value=liyang
10002 column=stuinfo:age, timestamp=1356760044478, value=28
10002 column=stuinfo:name, timestamp=1356760044478, value=lion
10003 column=stuinfo:age, timestamp=1356760044478, value=26
10003 column=stuinfo:name, timestamp=1356760044478, value=leon
3 row(s) in 0.0900 seconds
三、Oracle与Hbase互导数据
将Oracle中的dept表(列为id,name,addr)导出至hbase中的dept表(行键为id,列族为deptinfo)
sqoop import --append --connect jdbc:oracle:thin:@192.168.66.90:1521:orcl --username test --password test --m 1 --table dept --columns id,name,addr --hbase-create-table --hbase-table dept --hbase-row-key id --column-family deptinfo
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |