已知函数f(x)=x^3-3x^2-3x+2,则此函数的极大值点是_____________
7个回答
展开全部
f(x)=x³-3x²-3x+2,
其一阶导数f′(x)=3x²-6x-3=3(x²-2x-1)
令f′(x)=0,得
x=1+根号2,或x=1-根号2
f(x)二阶导数为
f''(x)=6x-6=6(x-1)
f''(1+根号2)=6*根号2>0
f''(1-根号2)=-6*根号2<0
所以x=1-根号2时,f(x)取极大值
极大值点为(1-根号2,f(1-根号2))
注:f(1-根号2)自己算。
其一阶导数f′(x)=3x²-6x-3=3(x²-2x-1)
令f′(x)=0,得
x=1+根号2,或x=1-根号2
f(x)二阶导数为
f''(x)=6x-6=6(x-1)
f''(1+根号2)=6*根号2>0
f''(1-根号2)=-6*根号2<0
所以x=1-根号2时,f(x)取极大值
极大值点为(1-根号2,f(1-根号2))
注:f(1-根号2)自己算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f‘(x)=(x^3-3x^2-3x+2)'=3x^2-6x-3=0 x=1±√2
f(x)=(1+√2)^3-3*(1+√2)^2-3*(1+√2)+2= -3-4√2
f(x)=(1-√2)^3-3*(1-√2)^2-3*(1-√2)+2= -7+5√2 (max)
f(x)=(1+√2)^3-3*(1+√2)^2-3*(1+√2)+2= -3-4√2
f(x)=(1-√2)^3-3*(1-√2)^2-3*(1-√2)+2= -7+5√2 (max)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知函数f(x)=x^3-3x^2-3x+2,则此函数的极大值点是______-3_______
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
求导得:y'=3x^2-6x-3;
然后就球零点为1-sqrt(2)
进一步求出f(1-sqrt(2))=4sqrt(2)-3
从而极大值点为(1-sqrt(2),4sqrt(2)-3)
其中sqrt表示开根号
然后就球零点为1-sqrt(2)
进一步求出f(1-sqrt(2))=4sqrt(2)-3
从而极大值点为(1-sqrt(2),4sqrt(2)-3)
其中sqrt表示开根号
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1-根号2
追问
能说一下过程吗?
追答
求导,解方程,利用数轴
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询