3个回答
展开全部
如果f'(x)连续,则结论成立.否则可能不成立。
f(x)=x+x^2sin(1/x),当x不为0时;f(0)=0,易知f'(0)=1>0,但
f'(x)=1+2xsin(1/x)-cos(1/x),f'(1/kpi)=1-(-1)^k,在k趋于无穷的过程中,f'(x)总有大于0的点,也有小于0的点,在0的任一个右邻域内f(x)不是单调的。
单调函数
一般地,设一连续函数 f(x) 的定义域为D,则
如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) >f(x2),即在D上具有单调性且单调增加,那么就说f(x) 在这个区间上是增函数。
相反地,如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) <f(x2),即在D上具有单调性且单调减少,那么就说 f(x) 在这个区间上是减函数。
展开全部
首先 ,函数连续不一定一阶导数连续,想函数 y=|x| 可知 x0>0的话,导数就是大于0的,但是x0的邻域可能包含了x轴左边的某些点和0,那么这样就不是单调增加了,只知道一个点的导数大于0是没用的,必须说整体邻域所有x0的导数都大于0,才能说其单调增加
欢迎追问!这是一个概念问题一定要弄懂~
欢迎追问!这是一个概念问题一定要弄懂~
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
后半句错误,但是没说是左还是右边的邻域,不能以偏概全
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询