高数不定积分。,
1个回答
展开全部
令1+3x=√2u,则:3x=√2u-1,u=(1+3x)/√2,dx=(√2/3)du.
∴∫[(3x-2)/(1-6x+9x^2)]dx
=∫{(3x-2)/[2-(1+3x)^2]}dx
=∫{[(√2u-1)-2]/[2-(√2u)^2]}(√2/3)du
=(√2/3)∫[(√2u-3)/(2-2u^2)]du
=(√2/6)∫[(√2u-3)/(1-u^2)]du
=(1/3)∫[u/(1-u^2)]du-(√2/2)∫[1/(1-u^2)]du
=(1/6)∫[1/(1-u)-1/(1+u)]du-(√2/4)∫[1/(1-u)+1/(1+u)]du
=-(1/6)ln(1-u)-(1/6)ln(1+u)+(√2/4)ln(1-u)-(√2/4)ln(1+u)+C
=[(3√2-2)/12]ln(1-u)-[(3√2+2)/12]ln(1+u)+C
=[(3√2-2)/12]ln[1-(1+3x)/√2]-[(3√2+2)/12]ln[1+(1+3x)/√2]+C
=[(3√2-2)/12]ln(√2-1-3x)-[(3√2+2)/12]ln(1+√2+3x)+C.
∴∫[(3x-2)/(1-6x+9x^2)]dx
=∫{(3x-2)/[2-(1+3x)^2]}dx
=∫{[(√2u-1)-2]/[2-(√2u)^2]}(√2/3)du
=(√2/3)∫[(√2u-3)/(2-2u^2)]du
=(√2/6)∫[(√2u-3)/(1-u^2)]du
=(1/3)∫[u/(1-u^2)]du-(√2/2)∫[1/(1-u^2)]du
=(1/6)∫[1/(1-u)-1/(1+u)]du-(√2/4)∫[1/(1-u)+1/(1+u)]du
=-(1/6)ln(1-u)-(1/6)ln(1+u)+(√2/4)ln(1-u)-(√2/4)ln(1+u)+C
=[(3√2-2)/12]ln(1-u)-[(3√2+2)/12]ln(1+u)+C
=[(3√2-2)/12]ln[1-(1+3x)/√2]-[(3√2+2)/12]ln[1+(1+3x)/√2]+C
=[(3√2-2)/12]ln(√2-1-3x)-[(3√2+2)/12]ln(1+√2+3x)+C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询