设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx怎么证明,谢

设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx怎么证明,谢谢啦!... 设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx怎么证明,谢谢啦! 展开
 我来答
教育小百科达人
2019-04-08 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx。

前面第一个积分符号积分区间是[0,1],第二个积分符号积分区间是[0,x],第三个积分符号积分区间是[0,1]。

调换一下积分次序即可,对式子左边先对x积分,后对t积分,则为∫[∫f(t)dx]dt,前面第一个积分符号积分区间是[0,1],第二个积分符号积分区间是[t,1]。

f(t)对先x积分得到的结果就是f(t)*(1-t),现在就只是关于t式子,用x替换t不影响定积分的结果,替换之后就是原式右边。

气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。

对于这种现象,我们说因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。

扩展资料:

对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。

当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于现在函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。

在某点连续的有限个函数经有限次和、差、积、商(分母不为0) 运算,结果仍是一个在该点连续的函数。连续单调递增 (递减)函数的反函数,也连续单调递增 (递减)。连续函数的复合函数是连续的。

闭区间上的连续函数具有一些重要的性质,是数学分析的基础,也是实数理论在函数中的直接体现。

参考资料来源:百度百科——连续函数

百度网友af34c30f5
推荐于2018-03-13 · TA获得超过4.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:65%
帮助的人:7003万
展开全部
设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
前面第一个积分符号积分区间是[0,1],第二个积分符号积分区间是[0,x],第三个积分符号积分区间是[0,1].

调换一下积分次序即可.
对式子左边先对x积分,后对t 积分,则为∫[∫f(t)dx]dt.前面第一个积分符号积分区间是[0,1],第二个积分符号积分区间是[t,1].
f(t)对先x积分得到的结果就是f(t)*(1-t).现在就只是关于t式子,用x替换t不影响定积分的结果,替换之后就是原式右边
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式