怎么把小数转化成分数
1、首先看小数点后面有几位数,如果是2位就除以100,是1位除以10,三位数除以1000,以此类推。
2、然后分子和分母约分到不能再约分为止。
3、拿0.12做列子,变成12/100,上下可以用4约分,变成3/25.
扩展资料:
分数是一个整数a和一个正整数b的不等于整数的比。
当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。 分子和分母也用于不常见的分数,包括复合分数,复数分数和混合数字。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
百分数与分数的区别:
(1)意义不同,百分数只表示两个数的倍比关系,不能带单位名称;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可带单位名称。
(2)百分数不可以约分,而分数一般通过约分化成最简分数。
(3)任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义。
(4)应用范围的不同,百分数在生产和生活中,常用于调查、统计、分析和比较,而分数常常在计算、测量中得不到整数结果时使用。
参考资料:百度百科-分数
小数转化成分数,要分几种情况:
一、有限小数
1、看是几位小数,就在1后面添几个0做分母
2、把原来的小数去掉小数点作分子
3、约分
二、无限纯循环小数
1、看循环节有几位,就写几个9做分母
2、循环节做分子
3、约分
三、无限混循环小数
1、看循环节有几位,就写几个9
2、看非循环部分有几位,就写几个0在9后面做分母
3、非循环部分和第一个循环节相连做分子
四、无理数
无理数本来就不能化成分数才叫无理数的,所以不能化分数。
扩展资料
小数,是实数的一种特殊的表现形式。所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
一、有限小数
1、看是几位小数,就在1后面添几个0做分母
2、把原来的小数去掉小数点作分子
3、约分
二、无限纯循环小数
1、看循环节有几位,就写几个9做分母
2、循环节做分子
3、约分
三、无限混循环小数
1、看循环节有几位,就写几个9
2、看非循环部分有几位,就写几个0在9后面做分母
3、非循环部分和第一个循环节相连做分子
四、无理数
无理数本来就不能化成分数才叫无理数的,所以不能化分数。
扩展资料:
分数(来自拉丁语,“破碎”)代表整体的一部分,或更一般地,任何数量相等的部分。分数是一个整数a和一个正整数b的不等于整数的比。当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。 分子和分母也用于不常见的分数,包括复合分数,复数分数和混合数字。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
参考资料:小数百度百科
如果小数乘N个10变成整数,那么分数就是(小数×10^N)/(10^N)。
例如:0.73变成分数:0.73需要乘100变成整数,所以分数就是73/100。
扩展资料:
分数(来自拉丁语,“破碎”)代表整体的一部分,或更一般地,任何数量相等的部分。
分数是一个整数a和一个正整数b的不等于整数的比。
当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。 分子和分母也用于不常见的分数,包括复合分数,复数分数和混合数字。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
参考资料:分数-百度百科
1、看是几位小数,就在1后面添几个0做分母。
2、把原来的小数去掉小数点后作分子。
3、能约分的要约分。
如:0.25二位小数——在1后面添2个0做分母(就是100)——把0.25去掉小数点做分子(就是25)——分数就是100分之125——约分后是4分之1
有限小数化成分数:分母的首位数是1后面是0,0的个数与小数位数的个数相同,分子是把有限小数取作整数,把小数点右边的数看作整数作为分子,但不包括小数点右边十分位、百分位、千分位,...上的0,能约分的要化简,譬如:将0.678化为分数,即678/1000=339/500,0.1681=1681/10000,0.087=87/1000,0.0078=78/10000=39/5000,...;
带小数(混小数)化成分数:
譬如:将2.18化成分数,解:因为2.18=2+0.18,所以,2.18=2+0.18=2+(18/100)=2+(9/50)=109/50,把3.1415化成分数,∵3.1415=3+0.1415,∴3.1415=3+(1415/10000)=3+(283/2000)=6283/2000,等等以此类推,能约分的一定要化简;
负小数化成分数其法则、方法与以上相同:
譬如:-0. ˙186˙=-186/999=-62/333,-0.0˙87˙=-87/990=-29/330,-0.5678=-5678/10000=-2839/5000,等等依次类推,能约分的一定要化为最简分数。
扩展资料
小数化分数:
1、有限小数化成分数:分母的首位数是1后面是0,0的个数与小数位数的个数相同,分子是把有限小数取作整数,把小数点右边的数看作整数作为分子,但不包括小数点右边十分位、百分位、千分位,...上的0,能约分的要化简。
2、带小数(混小数)化成分数:
将2.18化成分数,解:因为2.18=2+0.18,所以,2.18=2+0.18=2+(18/100)=2+(9/50)=109/50,把3.1415化成分数,∵3.1415=3+0.1415,∴3.1415=3+(1415/10000)=3+(283/2000)=6283/2000,等等以此类推,能约分的一定要化简;
3、负小数化成分数其法则、方法与以上相同:
˙186˙=-186/999=-62/333,-0.0˙87˙=-87/990=-29/330,-0.5678=-5678/10000=-2839/5000,等等依次类推,能约分的一定要化为最简分数。
参考资料:无限循环小数化分数的百度百科
广告 您可能关注的内容 |