用拉氏变换求解常微分方程初值问题

u'(t)+u(t)(nπa/l)^2=f(t)u(0)=0... u'(t)+u(t)(nπa/l)^2=f(t)
u(0)=0
展开
 我来答
匿名用户
2017-07-23
展开全部
您好,步骤如图所示:这个通解可是不初等的,请先检查题目有没有问题而且使用拉普拉斯变换来,要求微分方程是线性的,而这个方程却是非线性的很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。☆⌒_⌒☆如果问题解决后,请点击下面的“选为满意答案”
秒懂百科
2021-01-27 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.2亿
展开全部

拉普拉斯变换法:求解常系数线性常微分方程的一个重要方法

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式