第八第九题谢谢
3个回答
展开全部
(8)
∫(0->π/2) e^x. sinx dx
=∫(0->π/2) sinx de^x
= [sinx. e^x ]|(0->π/2) - ∫(0->π/2) e^x. cosx dx
= e^(π/2) - ∫(0->π/2) cosx de^x
= e^(π/2) - [cosx.e^x]|(0->π/2) -∫(0->π/2) e^x. sinx dx
= e^(π/2) + e^(π/2) -∫(0->π/2) e^x. sinx dx
∫(0->π/2) e^x. sinx dx = e^(π/2)
(9)
f(x) = xcosx/(2x^4+x^2+1)
f(-x)= -f(x)
∫(-3->3) [xcosx/(2x^4+x^2+1)] dx =0
∫(0->π/2) e^x. sinx dx
=∫(0->π/2) sinx de^x
= [sinx. e^x ]|(0->π/2) - ∫(0->π/2) e^x. cosx dx
= e^(π/2) - ∫(0->π/2) cosx de^x
= e^(π/2) - [cosx.e^x]|(0->π/2) -∫(0->π/2) e^x. sinx dx
= e^(π/2) + e^(π/2) -∫(0->π/2) e^x. sinx dx
∫(0->π/2) e^x. sinx dx = e^(π/2)
(9)
f(x) = xcosx/(2x^4+x^2+1)
f(-x)= -f(x)
∫(-3->3) [xcosx/(2x^4+x^2+1)] dx =0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询