小学奥数题
一个牧场长满青草,牛在吃草而草又在生长,27头牛6星期可以吃完牧场的草,23头牛9星期也可以吃完,21头牛吃完牧场的草需要几星期?...
一个牧场长满青草,牛在吃草而草又在生长,27头牛6星期可以吃完牧场的草,23头牛9星期也可以吃完,21头牛吃完牧场的草需要几星期?
展开
10个回答
展开全部
牛顿的名著《一般算术》中,还编有一道很有名的题目,即牛在牧场上吃草的题目,以后人们就把这种应用题叫做牛顿问题。
“有一片牧场的草,如果放牧27头牛,则6个星期可以把草吃光;如果放牧23头牛,则9个星期可以把草吃光;如果放牧21头牛,问几个星期可以把草吃光?”
解答这道题时,我们假定牧草上的草各处都一样密,草长得一样快,并且每头牛每星期的吃草量也相同。
分析与解 在牧场上放牛,牛不仅要吃掉牧场上原有的草,还要吃掉牧场上新长出的草。因此解答这道题的关键是要知道牧场上原有的牧草量和每星期草的生长量。
设每头牛每星期的吃草量为1。
27头牛6个星期的吃草量为27×6=162,这既包括牧场上原有的草,也包括6个星期长的草。
23头牛 9个星期的吃草量为 23×9= 207,这既包括牧场上原有的草,也包括9个星期长的草。
因为牧场上原有的草量一定,所以上面两式的差207-162=45正好是9个星期生长的草量与6个星期生长的草量的差。由此可以求出每星期草的生长量是45÷(9-6)=15。
牧场上原有的草量是162-15×6=72,或207-15×9= 72。
前面已假定每头牛每星期的吃草量为1,而每星期新长的草量为15,因此新长出的草可供15头牛吃。今要放牧21头牛,还余下21-5=6头牛要吃牧场上原有的草,这牧场上原有的草量够6头牛吃几个星期,就是21头牛吃完牧场上草的时间。72÷6=12(星期)。
也就是说,放牧21头牛,12个星期可以把牧场上的草吃光。
“有一片牧场的草,如果放牧27头牛,则6个星期可以把草吃光;如果放牧23头牛,则9个星期可以把草吃光;如果放牧21头牛,问几个星期可以把草吃光?”
解答这道题时,我们假定牧草上的草各处都一样密,草长得一样快,并且每头牛每星期的吃草量也相同。
分析与解 在牧场上放牛,牛不仅要吃掉牧场上原有的草,还要吃掉牧场上新长出的草。因此解答这道题的关键是要知道牧场上原有的牧草量和每星期草的生长量。
设每头牛每星期的吃草量为1。
27头牛6个星期的吃草量为27×6=162,这既包括牧场上原有的草,也包括6个星期长的草。
23头牛 9个星期的吃草量为 23×9= 207,这既包括牧场上原有的草,也包括9个星期长的草。
因为牧场上原有的草量一定,所以上面两式的差207-162=45正好是9个星期生长的草量与6个星期生长的草量的差。由此可以求出每星期草的生长量是45÷(9-6)=15。
牧场上原有的草量是162-15×6=72,或207-15×9= 72。
前面已假定每头牛每星期的吃草量为1,而每星期新长的草量为15,因此新长出的草可供15头牛吃。今要放牧21头牛,还余下21-5=6头牛要吃牧场上原有的草,这牧场上原有的草量够6头牛吃几个星期,就是21头牛吃完牧场上草的时间。72÷6=12(星期)。
也就是说,放牧21头牛,12个星期可以把牧场上的草吃光。
展开全部
解:设每头牛每星期的吃草量为1.
27头牛6个星期的吃草量为27×6=162,这既包括牧场上原有的草,也包括6个星期长的草。.
23头牛 9个星期的吃草量为 23×9= 207,这既包括牧场上原有的草,也包括9个星期长的草。 .
因为牧场上原有的草量一定,所以上面两式的差207-162=45正好是9个星期生长的草量与6个星期生长的草量的差。由此可以求出每星期草的生长量是45÷(9-6)=15.
牧场上原有的草量是162-15×6=72,或207-15×9= 72.
前面已假定每头牛每星期的吃草量为1,而每星期新长的草量为15,因此新长出的草可供15头牛吃。今要放牧21头牛,还余下21-5=6头牛要吃牧场上原有的草,这牧场上原有的草量够6头牛吃几个星期,就是21头牛吃完牧场上草的时间。72÷6=12星期
也就是说,放牧21头牛,12个星期可以把牧场上的草吃光
27头牛6个星期的吃草量为27×6=162,这既包括牧场上原有的草,也包括6个星期长的草。.
23头牛 9个星期的吃草量为 23×9= 207,这既包括牧场上原有的草,也包括9个星期长的草。 .
因为牧场上原有的草量一定,所以上面两式的差207-162=45正好是9个星期生长的草量与6个星期生长的草量的差。由此可以求出每星期草的生长量是45÷(9-6)=15.
牧场上原有的草量是162-15×6=72,或207-15×9= 72.
前面已假定每头牛每星期的吃草量为1,而每星期新长的草量为15,因此新长出的草可供15头牛吃。今要放牧21头牛,还余下21-5=6头牛要吃牧场上原有的草,这牧场上原有的草量够6头牛吃几个星期,就是21头牛吃完牧场上草的时间。72÷6=12星期
也就是说,放牧21头牛,12个星期可以把牧场上的草吃光
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设每周每头牛吃Xkg,每周草长Ykg.则有方程9Y-3Y=27乘6X-23乘9X。可以算的X=15Y,就可以说明每周长出来的草要15头牛来吃,剩下的牛吃原来长出的草。第一次12(27-15)头吃了6周,这次有6(21-15)头,所以是12周!!!不是什么10.5周
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
典型的牛吃草
一头牛一星期吃一份草
27头牛6星期吃27×6=162
23头牛9星期吃23×9=207
每星期新生的草量 (207-162)÷(9-6)=15
原有草量 162-6×15=72
设想21头牛中有15头专吃新生的草,其他的牛吃原有的草,全部牧场的草可吃星期数
72÷(21-15)=12
一头牛一星期吃一份草
27头牛6星期吃27×6=162
23头牛9星期吃23×9=207
每星期新生的草量 (207-162)÷(9-6)=15
原有草量 162-6×15=72
设想21头牛中有15头专吃新生的草,其他的牛吃原有的草,全部牧场的草可吃星期数
72÷(21-15)=12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |