大一高数题目求定积分2,3,5,需要解题过程(拍下来)
1个回答
展开全部
没法拍照,你凑合着看吧
(2)令t=√(1+x),则x=t^2-1,dx=2tdt
原式=∫t/(1+t)*2tdt
=2∫t^2/(1+t)dt
=2∫[(t-1)+1/(1+t)]dt
=t^2-2t+ln|1+t|+C
=1+x-2√(1+x)+ln|1+√(1+x)|+C
=x-2√(1+x)+ln|1+√(1+x)|+C,其中C是任意常数
(3)令x=asint,则dx=acostdt
原式=∫a^2sin^2t/acost*acostdt
=a^2*∫sin^2tdt
=(a^2/2)*∫(1-cos2t)dt
=(a^2/2)*[t-(1/2)*sin2t]+C
=(a^2/2)*[arcsin(x/a)-(x/a)*√(1-x^2/a^2)]+C
=(a^2/2)*arcsin(x/a)-(x/2)*√(a^2-x^2)+C,其中C是任意常数
(5)令x=tant,则dx=sec^2tdt
原式=∫tan^3t/sect*sec^2tdt
=∫tan^3t*sectdt
=∫tan^2t*d(sect)
=∫(sec^2t-1)d(sect)
=(1/3)*sec^3t-sect+C
=(1/3)*(x^2+1)^(3/2)-√(x^2+1)+C,其中C是任意常数
(2)令t=√(1+x),则x=t^2-1,dx=2tdt
原式=∫t/(1+t)*2tdt
=2∫t^2/(1+t)dt
=2∫[(t-1)+1/(1+t)]dt
=t^2-2t+ln|1+t|+C
=1+x-2√(1+x)+ln|1+√(1+x)|+C
=x-2√(1+x)+ln|1+√(1+x)|+C,其中C是任意常数
(3)令x=asint,则dx=acostdt
原式=∫a^2sin^2t/acost*acostdt
=a^2*∫sin^2tdt
=(a^2/2)*∫(1-cos2t)dt
=(a^2/2)*[t-(1/2)*sin2t]+C
=(a^2/2)*[arcsin(x/a)-(x/a)*√(1-x^2/a^2)]+C
=(a^2/2)*arcsin(x/a)-(x/2)*√(a^2-x^2)+C,其中C是任意常数
(5)令x=tant,则dx=sec^2tdt
原式=∫tan^3t/sect*sec^2tdt
=∫tan^3t*sectdt
=∫tan^2t*d(sect)
=∫(sec^2t-1)d(sect)
=(1/3)*sec^3t-sect+C
=(1/3)*(x^2+1)^(3/2)-√(x^2+1)+C,其中C是任意常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |