如图,在平面直角坐标系中放置一直角三角板,其顶点为A(-1,0),B(0,√3),C(0,0) ,
将此三角板绕原点顺时针旋转30°,得到△A’B'O.(1)如图,一抛物线经过点A,B,B’,求该抛物线解析式;(2)设点P是在第一象限内抛物线上一动点,求使四边形PBAB...
将此三角板绕原点 顺时针旋转 30°,
得到△A’B'O .
(1)如图,一抛物线经过点A,B,B’,
求该抛物线解析式;
(2)设点P是在第一象限内抛物线上一动点,
求使四边形PBAB’的面积达到最大时点P的
坐标及面积的最大值. 展开
得到△A’B'O .
(1)如图,一抛物线经过点A,B,B’,
求该抛物线解析式;
(2)设点P是在第一象限内抛物线上一动点,
求使四边形PBAB’的面积达到最大时点P的
坐标及面积的最大值. 展开
7个回答
展开全部
设抛物线方程为
y=ax^2+bx+c,可得三元一次方程组
0=a-b+c
{√3=c
0=3a+√3b+c
解得a=-1,b=√3-1,c=√3。因此抛物线解析式为y=-x^2+(√3-1)x+√3
2、设第一象限动点P(x,-x^2+(√3-1)x+√3),0<x<√3
则四边形PBAB′的面积为
S=f(x)=√3/2+√3x/2+√3/2×[-x^2+(√3-1)x+√3]
=-√3/2[(x-√3/2)^2-3/4]+3/2+√3/2
显然,,当x=√3/2时,面积最大,且Smax=3/2+7√3/8,此时P(√3/2,3/4+√3/2)。
y=ax^2+bx+c,可得三元一次方程组
0=a-b+c
{√3=c
0=3a+√3b+c
解得a=-1,b=√3-1,c=√3。因此抛物线解析式为y=-x^2+(√3-1)x+√3
2、设第一象限动点P(x,-x^2+(√3-1)x+√3),0<x<√3
则四边形PBAB′的面积为
S=f(x)=√3/2+√3x/2+√3/2×[-x^2+(√3-1)x+√3]
=-√3/2[(x-√3/2)^2-3/4]+3/2+√3/2
显然,,当x=√3/2时,面积最大,且Smax=3/2+7√3/8,此时P(√3/2,3/4+√3/2)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
抛物线经过点A(-1,0)、B(0,√3)及B'(√3,0).三点。设抛物线方程为
y=ax^2+bx+c,可得三元一次方程组
0=a-b+c
{√3=c
0=3a+√3b+c
解得a=-1,b=√3-1,c=√3。因此抛物线解析式为y=-x^2+(√3-1)x+√3
2、设第一象限动点P(x,-x^2+(√3-1)x+√3),0<x<√3
则四边形PBAB′的面积为
S=f(x)=√3/2+√3x/2+√3/2×[-x^2+(√3-1)x+√3]
=-√3/2[(x-√3/2)^2-3/4]+3/2+√3/2
显然,,当x=√3/2时,面积最大,且Smax=3/2+7√3/8,此时P(√3/2,3/4+√3/2)。
y=ax^2+bx+c,可得三元一次方程组
0=a-b+c
{√3=c
0=3a+√3b+c
解得a=-1,b=√3-1,c=√3。因此抛物线解析式为y=-x^2+(√3-1)x+√3
2、设第一象限动点P(x,-x^2+(√3-1)x+√3),0<x<√3
则四边形PBAB′的面积为
S=f(x)=√3/2+√3x/2+√3/2×[-x^2+(√3-1)x+√3]
=-√3/2[(x-√3/2)^2-3/4]+3/2+√3/2
显然,,当x=√3/2时,面积最大,且Smax=3/2+7√3/8,此时P(√3/2,3/4+√3/2)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)设抛物线方程为y=ax^2+bx+c,可得三元一次方程组
0=a-b+c
{√3=c
0=3a+√3b+c
解得a=-1,b=√3-1,c=√3。因此抛物线解析式为y=-x^2+(√3-1)x+√3
(2)连PB,PO,PB' 设P为(x,y)
S四边形PBAB'=S△BAO+S△PBO+S△PB'O=√3/2+√3/2x+√3/2y=。。。。。
由题知y=-x^2+(√3-1)x+√3 一代入就好
0=a-b+c
{√3=c
0=3a+√3b+c
解得a=-1,b=√3-1,c=√3。因此抛物线解析式为y=-x^2+(√3-1)x+√3
(2)连PB,PO,PB' 设P为(x,y)
S四边形PBAB'=S△BAO+S△PBO+S△PB'O=√3/2+√3/2x+√3/2y=。。。。。
由题知y=-x^2+(√3-1)x+√3 一代入就好
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询