已知圆(x+2)2+(y+1)2=4上有两点P,Q关于直线mx+ny+1=0对称,m>0,n>0,则1/m+2/n的最小值
3个回答
展开全部
(x+2)²+(y+1)²=4
圆心为(-2,-1) 半径=2
有两点关于mx+ny+1=0 对称
则 mx+ny+1=0 和圆相交
圆心到直线距离=|-2m-n+1|/根号下(m²+n²)
0<=|-2m-n+1|/根号下(m²+n²)<2
1/m+2/n
=(n+2m)/mn
=(2m+n-1+1)/mn
mn<=根号下[(m²+n²)/2]
所以 (2m+n-1+1)/mn>=(2m+n-1+1)/根号下[(m²+n²)/2]
>=(2m+n-1)/根号下[(m²+n²)/2]
>=0
圆心为(-2,-1) 半径=2
有两点关于mx+ny+1=0 对称
则 mx+ny+1=0 和圆相交
圆心到直线距离=|-2m-n+1|/根号下(m²+n²)
0<=|-2m-n+1|/根号下(m²+n²)<2
1/m+2/n
=(n+2m)/mn
=(2m+n-1+1)/mn
mn<=根号下[(m²+n²)/2]
所以 (2m+n-1+1)/mn>=(2m+n-1+1)/根号下[(m²+n²)/2]
>=(2m+n-1)/根号下[(m²+n²)/2]
>=0
追问
答案是什么,说详细些
追答
错了 楼下的对的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询