2个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
这句话不是绝对的,收敛半径不变是对的,收敛域缩小(扩大)不一定正确
∑a(n) x^n 积分得 ∑a(n)x^(n+1)/(n+1)
收敛半径 R=lim a(n)/a(n+1)
而 lim[a(n-1)/n] /[a(n]/(n+1)] 仍为R,收敛半径不变
原 ∑a(n) (-R)^n 有可能不收敛,但 ∑ a(n)(- R)^(n+1)/(n+1) 有可能收敛
如 ∑(-1)^n 不收敛,但∑ (- 1)^(n+1)/(n+1) 是交错级数,收敛域扩大了
而对∑ x^n/[n(n+1)] 收敛域为[-1,1]
积分后得 ∑ x^(n+1)/[n(n+1)²] 收敛域不变仍为[-1,1]
备注,我从其他帖子找到的,我只是搬运工。
∑a(n) x^n 积分得 ∑a(n)x^(n+1)/(n+1)
收敛半径 R=lim a(n)/a(n+1)
而 lim[a(n-1)/n] /[a(n]/(n+1)] 仍为R,收敛半径不变
原 ∑a(n) (-R)^n 有可能不收敛,但 ∑ a(n)(- R)^(n+1)/(n+1) 有可能收敛
如 ∑(-1)^n 不收敛,但∑ (- 1)^(n+1)/(n+1) 是交错级数,收敛域扩大了
而对∑ x^n/[n(n+1)] 收敛域为[-1,1]
积分后得 ∑ x^(n+1)/[n(n+1)²] 收敛域不变仍为[-1,1]
备注,我从其他帖子找到的,我只是搬运工。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询